Skip to main content
Log in

Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The phylogeny and taxonomy of the drosophilids have been the subject of extensive investigations. Recently, Grimaldi (1990) has challenged some common conceptions, and several sets of molecular data have provided information not always compatible with other taxonomic knowledge or consistent with each other. We present the coding nucleotide sequence of the Cu,Zn superoxide dismutase gene (Sod) for 15 species, which include the medfly Ceratitis capitata (family Tephritidae), the genera Chymomyza and Zaprionus, and representatives of the subgenera Dorsilopha, Drosophila, Hirtodrosophila, Scaptodrosophila, and Sophophora. Phylogenetic analysis of the Sod sequences indicates that Scaptodrosophila and Chymomyza branched off the main lineage before the major Drosophila radiations. The presence of a second intron in Chymomyza and Scaptodrosophila (as well as in the medfly) confirms the early divergence of these two taxa. This second intron became deleted from the main lineage before the major Drosophila radiations. According to the Sod sequences, Sophophora (including the melanogaster, obscura, saltans, and willistoni species groups) is older than the subgenus Drosophila; a deep branch splits the willistoni and saltans groups from the melanogaster and obscura groups. The genus Zaprionus and the subgenera Dorsilopha and Hirtodrosophila appear as branches of a prolific “bush” that also embraces the numerous species of the subgenus Drosophila. The Sod results corroborate in many, but not all, respects Throckmorton's (King, R.C. (ed) Handbook of Genetics. Plenum Press, New York, pp. 421–469, 1975) phylogeny; are inconsistent in some important ways with Grimaldi's (Bull. Am. Museum Nat. Hist. 197:1–139, 1990) cladistic analysis; and also are inconsistent with some inferences based on mitochondrial DNA data. The Sod results manifest how, in addition to the information derived from nucleotide sequences, structural features (i.e., the deletion of an intron) can help resolve phylogenetic issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ayala FJ (1986) On the virtues and pitfalls of the molecular evolutionary clock. J Hered 77:226–235

    CAS  PubMed  Google Scholar 

  • Beverley SM, Wilson AC (1984) Molecular evolution in Drosophila and higher Diptera. II. Time scale for fly evolution. J Mol Evol 21:1–13

    Article  CAS  PubMed  Google Scholar 

  • Collier GE, MacIntyre RJ (1977) Microcomplement fixation studies on the evolution of α-glycerophosphate dehydrogenase within the genus Drosophila. Proc Natl Acad Sci USA 74:684–688

    CAS  PubMed  Google Scholar 

  • Dayhoff MD (1978) Atlas of protein sequence and structure. Natl Biomed Res Found, Washington, DC

    Google Scholar 

  • DeSalle R (1992) The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol Phylogenet Evol 1:31–40

    CAS  PubMed  Google Scholar 

  • DeSalle R, Grimaldi DA (1991) Morphological and molecular systematics of the Drosophilidae. Annu Rev Ecol Syst 22:447–475

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–374

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985a) Confidence limits on phylogenies with a molecular clock. Syst Zool 34:152–161

    Google Scholar 

  • Felsenstein J (1985b) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–287

    CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol 58:61–97

    CAS  PubMed  Google Scholar 

  • Gillespie JH (1986) Rates of molecular evolution. Annu Rev Ecol Syst 17:637–655

    Article  Google Scholar 

  • Grimaldi D (1990) A phylogenetic revised classification of genera in the Drosophilidae. Bull Am Museum Nat Hist 197:1–139

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ (1994) Evidence for positive selection at the superoxide dismutase (Sod) locus of Drosophila rnelanogaster. Genetics (in press)

  • Kawasaki ES (1990) Sample preparation from blood, cells, and other fluids. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 146–152

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kwiatowski J, Ayala FJ (1989) Drosophila virilis Cu,Zn superoxide dismutase gene sequence. Nucleic Acids Res 17:2133

    CAS  PubMed  Google Scholar 

  • Kwiatowski J, Gonzalez F, Ayala FJ (1989a) Drosophila simulans Cu,Zn superoxide dismutase gene sequence. Nucleic Acids Res 17:6735

    CAS  PubMed  Google Scholar 

  • Kwiatowski J, Patel M, Ayala FJ (1989b) Drosophila melanogaster Cu,Zn superoxide dismutase gene sequence. Nucleic Acids Res 17:1264

    CAS  PubMed  Google Scholar 

  • Kwiatowski J, Hudson RR, Ayala FJ (1991a) The rate of Cu,Zn superoxide dismutase evolution. Free Radic Res Common 12–13: 363–370

    CAS  Google Scholar 

  • Kwiatowski J, Skarecky D, Hernandez S, Pham D, Quijas F, Ayala FJ (1991b) High fidelity of the polymerase chain reaction. Mol Biol Evol 8:884–887

    CAS  PubMed  Google Scholar 

  • Kwiatowski J, Skarecky D, Ayala FJ (1992a) Structure and sequence of the Cu, Zn Sod gene in the Mediterranean fruit-fly, Ceratitis capitata: intron insertion/deletion and evolution of the gene. Mol Phyl Evol 1:72–82

    CAS  Google Scholar 

  • Kwiatowski J, Skarecky D, Burgos M, Ayala FJ (1992b) Structure and sequence of the Cu,Zn superoxide dismutase gene of Chymomyza amoena: phylogeny of the genus and codon-use evolution. Insect Mol Biol 1:3–13

    CAS  PubMed  Google Scholar 

  • Lee YM, Friedman DJ, Ayala FJ (1985) Superoxide dismutase: an evolutionary puzzle. Proc Natl Acad Sci USA 82:824–828

    CAS  PubMed  Google Scholar 

  • Lloyd AT, Sharp PM (1992) CODONS: a microcomputer program for codon usage analysis. J Hered 83:239–240

    CAS  PubMed  Google Scholar 

  • Patterson JT, Stone WS (1952) Evolution in the genus Drosophila. MacMillan, New York

    Google Scholar 

  • Pelandakis M, Higgins DH, Solignac M (1991) Molecular phylogeny of the subgenus Sophophora of Drosophila derived from large subunit of ribosomal RNA sequences. Genetica 84:87–94

    CAS  PubMed  Google Scholar 

  • Rousset FM, Pelandaks M, Solignac M (1991) Evolution of compensatory substitutions through G-U intermediate state in Drosophila rRNA. Proc Natl Acad Sci USA 88:10032–10036

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schistosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211

    CAS  PubMed  Google Scholar 

  • Spicer GS (1988) Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis. J Mol Evol 27:250–260

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Sullivan DT (1989) A shift in the third-codon-position nucleotide frequency in alcohol dehydrogenase genes in the genus Drosophila. Mol Biol Evol 6:546–552

    CAS  PubMed  Google Scholar 

  • Sturtevant AH (1921) The North American species of Drosophila. Carnegie Institution, Washington, DC

    Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution 37:221–244

    CAS  Google Scholar 

  • Thomas RH, Hunt JA (1993) Phylogenetic relationships in Drosophila: a conflict between molecular and morphological data. Mol Biol Evol 10:362–374

    CAS  PubMed  Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography of Drosophila. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Villarroya A, Juan E (1991) ADH and phylogenetic relationships of Drosophila lebanonensis (Scaptodrosophila). J Mol Evol 32:421–428

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MR (1981) The Drosophilidae: a taxonomic overview. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of drosophila. Academic Press, New York, pp 1–97

    Google Scholar 

  • Wheeler MR (1986) Additions to the Catalog of the World's Drosophilidae. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of drosophila, vol 3e. Academic Press, New York, pp 395–409

    Google Scholar 

  • Woese CR (1991) The use of ribosomal RNA in reconstructing evolutionary relationships among bacteria. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the molecular level. Sinauer Associates, Sunderland, MA, pp 1–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence requests to: F. J. Ayala

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwiatowski, J., Skarecky, D., Bailey, K. et al. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene. J Mol Evol 38, 443–454 (1994). https://doi.org/10.1007/BF00178844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178844

Key words

Navigation