Journal of Mathematical Biology

, Volume 28, Issue 3, pp 307–315 | Cite as

Superposition of modes in a caricature of a model for morphogenesis

  • P. K. Maini


In a model proposed for cell pattern formation by Nagorcka et al. (J. Theor. Biol. 1987) linear analysis revealed the possibility of an initially spatially uniform cell density going unstable to perturbations of two distinct spatial modes. Here we examine a simple one-dimensional caricature of their model which exhibits similar linear behaviour and present a nonlinear analysis which shows the possibility of superposition of modes subject to appropriate parameter values and initial conditions.

Key words

Mechanochemical Superposition of modes Cell patterning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oster, G. F., Murray, J. D., Harris, A. K.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83–125 (1983)Google Scholar
  2. 2.
    Murray, J. D., Oster, G. F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol. 19, 265–279 (1984)Google Scholar
  3. 3.
    Oster, G. F., Murray, J. D., Maini, P. K.: A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions. J. Embryol. Exp. Morph. 89, 93–112 (1985)Google Scholar
  4. 4.
    Murray, J. D., Maini, P. K., Tranquilio, R. T.: Mechanochemical models for generating biological pattern and form in development. Physics Reports 171(2), 59–84 (1988)Google Scholar
  5. 5.
    Nagorcka, B. N., Manorangan, V. S., Murray, J. D.: Complex spatial patterns from tissue interactions-an illustrative model. J. Theor. Biol. 128, 93–112 (1987)Google Scholar
  6. 6.
    Perelson, A. S., Maini, P. K., Murray, J. D., Hyman, J. M., Oster, G. F.: Nonlinear pattern selection in a mechanical model for morphogenesis. J. Math Biol. 24, 525–541 (1986)Google Scholar
  7. 7.
    Maini, P. K., Murray, J. D.: A nonlinear analysis of a mechanical model for biological pattern formation. SIAM J. Appl. Math. 48, 1064–1072 (1988)Google Scholar
  8. 8.
    Britton, N. F.: A singular dispersion relation arising in a caricature of a model for morphogensis. J. Math. Biol. 26, 387–403 (1988)Google Scholar
  9. 9.
    Maini, P. K.: Spatial and spatao-temporal patterns in a cell-haptotaxis model. J. Math. Biol. 27, 507–522 (1989)Google Scholar
  10. 10.
    Shaw, L. J., Murray, J. D.: Analysis of a model for complex skin patterns. SIAM J. Appl. Math., (in press)Google Scholar
  11. 11.
    Segel, L. A.: The structure of non-linear cellular solutions to the Boussinesq equations. J. Fluid Mech. 21, 345–358 (1965)Google Scholar
  12. 12.
    Fife, P. C.: Mathematical aspects of reacting and diffusion systems. Berlin Heidelberg New York: Springer 1977Google Scholar
  13. 13.
    Haken, H.: Synergetics. An introduction. Nonequilibrium phase transitions and self-organisation in physics, chemistry and biology. Berlin Heidelberg New York: Springer 1977Google Scholar
  14. 14.
    Eilbeck, J. C.: A collocation approach to the numerical calculation of simple gradients in reaction-diffusion systems. J. Math. Biol. 16, 233–249 (1982/83)Google Scholar
  15. 15.
    Segel, L. A.: The non-linear interaction of two disturbances in the thermal convection problem. J. Fluid Mech. 14, 97–114 (1962)Google Scholar
  16. 16.
    DiPrima, R. A., Eckhaus, W., Segel, L.A.: Non-linear wave-number interaction in near-critical two-dimensional flows. J. Fluid Mech. 49, 705–744 (1971)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. K. Maini
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations