Skip to main content
Log in

Regioselective hydroxylation of chlorobenzene and chlorophenols by a Pseudomonas putida

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Pseudomonas putida MST, previously isolated in the presence of α-methylstyrene, has been shown to transform several substituted aromatic compounds. It was able to modify halogenated aromatic compounds by co-oxidation. It regiospecifically hydroxylates chlorobenzene and 2-chlorophenol to 3-chlorocatechol, and 4-chlorophenol to 4-chlorocatechol; both metabolites were identified in the cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballschmiter K, Unglert C, Heizmann (1977) Bildung von Chlorphenolen durch mikrobielle Umwandlung von Chlorbenzolen. Angew Chem 89:680–681

    Google Scholar 

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    CAS  Google Scholar 

  • Bestetti G, Galli E, Benigni C, Orsini F, Pelizzoni F (1989) Biotransformation of styrenes by a Pseudomonas putida. Appl Microbiol Biotechnol 30:252–256

    Google Scholar 

  • Bont JAM de, Vorage AJAW, Hartmans S, Tweel WJJ van den (1986) Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol 52:677–680

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenase from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174:85–94

    Google Scholar 

  • Gibson DT, Koch JR, Kallio RE (1968a) Oxidative degradation of aromatic hydrocarbons by microorganism. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662

    Google Scholar 

  • Gibson DT, Koch JR, Schuld CL, Kallio RE (1968b) Oxidative degradation of aromatic hydrocarbons by microorganism. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802

    Google Scholar 

  • Gibson DT, Zylstra GJ, Chauhan S (1990) Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1. In: Silver S, Chakrabarty AM, Iglewsky B, Kaplan S (eds) Pseudomonas: biotransformations, pathogenesis, and evolving biotechnology. AMS, Washington, DC, pp 121–132

    Google Scholar 

  • Gunstone FD (1960) Hydroxylation methods. Adv Org Chem 1:103–147

    Google Scholar 

  • Haller HD, Finn RK (1979) Biodegradation of 3-chlorobenzoate and formation of black color in the presence and absence of benzoate. Eur J Appl Microbiol Biotechnol 8:191–205

    Google Scholar 

  • Hammond AL (1972) Chemical pollution: polychlorinated biphenyls. Science 175:155–156

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss HJ (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37:421–428

    Google Scholar 

  • Jackson RW, DeMoss JA (1965) Effects of toluene on Escherichia coli. J Bacteriol 90:1420–1425

    Google Scholar 

  • Johnston JB, Renganathan V (1987) Production of substituted catechols from substituted benzenes by a Pseudomonas sp. Enzyme Microb Technol 9:706–708

    Google Scholar 

  • Karns JS, Kilbane JJ, Duttagupta S, Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl Environ Microbiol 46:1176–1181

    Google Scholar 

  • Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165

    CAS  PubMed  Google Scholar 

  • Knuutinen J, Korhoonen IOO (1983) Mass spectra of chlorinated aromatics formed in pulp bleaching. Org Mass Spectrom 18:438–441

    Google Scholar 

  • Maniatis T, Fritch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  • Reineke W, Knackmuss HJ (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    Google Scholar 

  • Schmidt E, Hellwing M, Knackmuss HJ (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl Environ Microbiol 46:1083–1144

    Google Scholar 

  • Spain JC, Gibson DT (1988) Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6. Appl Environ Microbiol 54:1399–1404

    Google Scholar 

  • Steiert JG, Crawford RL (1985) Microbial degradation of chlorinated phenols. Trends Biotechnol 3:300–305

    Google Scholar 

  • Tweel WJJ van den, Bont JAM de, Vorage MJAW, Marsman EH, Tramper J, Koppejan J (1988) Continuous production of cis-1,2-dihydroxycyclohexa-3,5-diene (cis-benzeneglycol) from benzene by a mutant of a benzene-degrading Pseudomonas sp. Enzyme Microb Technol 10:134–142

    Google Scholar 

  • Wrede F, Muhlroth P (1930) Substitutionsprodukte des Brenzcatechins. Berichte 63:1931–1935

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bestetti, G., Galli, E., Leoni, B. et al. Regioselective hydroxylation of chlorobenzene and chlorophenols by a Pseudomonas putida . Appl Microbiol Biotechnol 37, 260–263 (1992). https://doi.org/10.1007/BF00178181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178181

Keywords

Navigation