Skip to main content
Log in

Immunohistochemical evaluation of erbB-2 and p53 protein expression in benign and atypical human meningiomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Meningiomas arise from the arachnoidal cells surrounding the brain and are one of the most common tumors of the central nervous system. These tumors are known to be hormonally modulated and may occur in association with breast carcinoma. Overexpression of the erbB-2 oncogene product and mutation of the tumor suppressor p53 gene are considered causal driving forces in the pathogenesis of adenocarcinomas of the breast. To determine whether abnormal expression of these genes also plays a role in the pathogenesis of meningiomas, we analyzed the expression of the erbB-2 and p53 proteins in 17 atypical and 35 typical meningioma tissue specimens by immunohistochemistry. The staining intensity was assigned a relative value of 0 to 5+, where 5+ denoted confluent immunoreactivity, 4+ to 1+ denoted varying degrees of focal positivity, and 0 denoted no evidence of staining. Levels of p53 and erbB-2 immunohistochemical staining were then correlated with tumor histology. For p53 immunoreactivity, typical meningiomas had a median staining score of 1.0, compared to 4.0 for atypical meningiomas (P < 0.0001, Mann-Whitney U test). For erbB-2 immunoreactivity, typical meningiomas had a median staining score of 5.0 compared to 1.0 for atypical meningiomas (P < 0.0001, Mann-Whitney U test). The inverse relationship between levels of erbB-2 and p53 immunoreactivity was found to be statistically significant (P < 0.0001, ANOVA). Expression of the erbB-2 protein was not associated with gene amplification or the presence of activating mutations in the transmembrane region of the protein. These findings may improve our understanding of the molecular events that occur in the neoplastic transformation of meningothelial cells. The patterns of erbB-2 and p53 immunoreactivity may prove to be useful markers with which to identify potentially more malignant meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell DS, Rubinstein LJ: Pathology of tumors of the nervous system. Baltimore, Williams & Wilkens, 1989, ed 5, pp 449–529

    Google Scholar 

  2. Bickerstaff ER, Small JM, Guest IA: The relapsing course of certain meningiomas in relationship to pregnancy and menstruation. J Neurol Neurosurg Psychiatry 21: 89–91, 1958

    Google Scholar 

  3. Jay JR, MacLaughlin DT, Riley KR, Martuza RL: Modulation of meningioma cell growth by steroid hormones in vitro. J Neurosurg 62: 750–756, 1985

    Google Scholar 

  4. Martuza RL, Miller DC, MacLaughlin DT: Estrogen and progestin binding by cytosolic and nuclear fractions of human maningiomas. J Neurosurg 62: 750–756, 1985

    Google Scholar 

  5. Olson JJ, Beck DW, Schlechte J, Loh PM: Hormonal modulation of meningioma in vitro. J Neurosurg 65: 99–107, 1986

    Google Scholar 

  6. Knuckey NW, Stoll J, Epstein MH: Intracranial and spinal meningiomas in patients with breast carcinoma: Case reports. Neurosurg 25: 112–117, 1989

    Google Scholar 

  7. Schoenberg BS, Christine BV, Whisnant JB: Nervous system neoplasms and primary malignancies of other sites: The unique association between meningiomas and breast cancer. Neurology 25: 705–712, 1984

    Google Scholar 

  8. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Pak JW, Yansura D, Abadi N, Raab H, Lewis GD, Shepard M, Kuang W-J, Wood WI, Goeddel DV, Vandlen RL: Identification of heregulin, a specific activator of p185erbB2. Science 256: 1205–1210, 1992

    Google Scholar 

  9. Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, Trail G, Hu S, Silbiger SM, Ben Levy R, Koski RA, Lu HS, Yarden Y: Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 69: 559–572, 1992

    Google Scholar 

  10. Marchionni MA, Goodearl ADJ, Chen MS, Bermingham-McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D, Sudhatler J, Kobayashi K, Wroblewski D, Lynch C, Baldassare M, Hiles I, Davis JB, Hsuan J, Totty NF, Otsu M, McBurney RN, Waterfield MD, Stroobant P, Gwynne D: Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362: 312–318, 1993

    Google Scholar 

  11. Bargmann CI, Hung M-C, Weinberg RA: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45: 649–657, 1986

    Google Scholar 

  12. Segatto O, King CR, Pierce JH, DiFiore PP, Aaronson SA: Different structural alterations up-regulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol 8: 5570–5574, 1988

    Google Scholar 

  13. DiFiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA: erbB-2 is a potent oncogene when overexpressed in NIH/313 cells. Science 237: 178–182, 1987

    Google Scholar 

  14. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712, 1989

    CAS  PubMed  Google Scholar 

  15. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig W: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    CAS  PubMed  Google Scholar 

  16. Lane DP: p53, guardian of the genome. Nature 358: 15–16, 1992

    Article  CAS  PubMed  Google Scholar 

  17. Holstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 253: 49–53, 1991

    CAS  PubMed  Google Scholar 

  18. Iggo R, Gatter K, Bartek J, Lane D, Harris AL: Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335: 675–679, 1990

    Google Scholar 

  19. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ: Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8: 531–539, 1988

    Google Scholar 

  20. Momand J, Zambetti GP, Olson DC, George DL, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245, 1992

    Google Scholar 

  21. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B: Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83, 1992

    Google Scholar 

  22. Andersen TT, Holm R, Nesland JM, Heimdal KR, Ottestad L: Prognostic significance of TP53 alterations in breast carcinoma. Br J Cancer 68: 540–548, 1993

    Google Scholar 

  23. Callahan R: p53 mutations, another breast cancer prognostic factor. J Natl Cancer Inst 84: 826–827, 1992

    Google Scholar 

  24. Rubinstein LJ: Tumors of the central nervous system. In: Atlas of Tumor Pathology, Bethesda, Armed Forces Institute of Pathology, 2nd series, Fascicle 6, 1972

    Google Scholar 

  25. Corbett IP, Henry JA, Angus B, Watchorn CJ, Wilkinson L, Henessy C, Gullick WJ, Tuzi NL, May FEB, Westley BR, Horne CHW: NCL-CBll, a new monoclonal antibody recognizing the internal domain of the c-erbB-2 oncogene protein effective for use on formalin-fixed, paraffin-embedded tissue. J Pathol 161: 15–25, 1990

    Article  Google Scholar 

  26. Singleton TP, Niehaus GA, Gu F, Litz GE, Hagen K, Qui Q, Kiang DT, Strickler JG: Detection of c-erbB-2 activation in paraffin-embedded tissue by immunohistochemistry. Hum Pathol 23: 1141–1150, 1992

    Google Scholar 

  27. Banks L, Matlashewski D, Crawford L: Isolation of human p53-specific monoclonal antibodies and their use in the study of human p53 expression. Eur J Biochem 159: 529–534, 1986

    Google Scholar 

  28. Chozick BS, Weicker ME, Pezzullo JC, Jackson CL, Finkelstein SD, Ambler MW, Epstein MH, Finch PW: Pattern of mutant p53 expression in human astrocytomas suggests the existance of alternate pathways of tumorigenesis. Cancer 73: 406–415, 1994

    Google Scholar 

  29. Porter PL, Gown AM, Kamp SG, Coltrera MD: Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-fixed tissue. Am J Pathol 140: 145–153, 1992

    Google Scholar 

  30. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517, 1975

    CAS  PubMed  Google Scholar 

  31. Coussens L, Yang-Feng TL, Liao Y-C, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U, Levinson A, Ullrich A: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230: 1132–1139, 1985

    CAS  PubMed  Google Scholar 

  32. Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, Francke U, Ullrich A: Multiple, distinct forms of bovine and human protein kinase C suggests diversity in cellular signalling pathways. Science 233: 859–866, 1986

    Google Scholar 

  33. Feinberg A, Vogelstein B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267, 1984

    CAS  PubMed  Google Scholar 

  34. Benzil DL, Finkelstein SD, Epstein MH, Finch PW: Expression pattern of αPKC in human astrocytomas indicates a role in malignant progression. Cancer Res 52: 2951–2956, 1992

    Google Scholar 

  35. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299, 1979

    CAS  PubMed  Google Scholar 

  36. Wang AM, Doyle MV, Mark DF: Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86: 9717–9721, 1989

    Google Scholar 

  37. van de Vijver M, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification of the neu(c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7: 2019–2023, 1987

    Google Scholar 

  38. Schlegel J, Ullrich B, Stumm G, Gass P, Harwerth I-M, Hynes NE, Keissling M: Expression of the c-erbB-2-encoded oncoprotein and progesterone receptor in human meningiomas. Acta Neuropathol 86: 473–479, 1993

    Google Scholar 

  39. Press MF, Cordon-Cardo C, Slamon DJ: Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5: 953–962, 1990

    Google Scholar 

  40. Mori S, Akiyama T, Yamada Y, Morishita Y, Sugawara I, Toyoshima K, Yamamoto T: C-erbB-2 gene product, a membrane protein commonly expressed on human fetal epithelial cells. Lab Invest 61: 93–97, 1989

    Google Scholar 

  41. O'Rahilly R, Muller F: The meninges in human development. J Neuropathol Exp Neurol 45: 588–608, 1986

    Google Scholar 

  42. Halliday WC, Yeger H, Duwe GF, Phillips MJ: Intermediate filaments in meningiomas. J Neuropath Exp Neurol 44: 617–623, 1985

    Google Scholar 

  43. Schwecheimer K, Kartenbeck J, Moll R, Franke WW: Vimentin filament-desmosome cytoskeleton of diverse types of human meningioma: A distinctive diagnostic feature. Lab Invest 51: 584–591, 1984

    Google Scholar 

  44. Alguacil-Garcia A, Pettigrew NM, Sima AAF: Secretory meningiorna: A distinct subtype of meningioma. Am J Surg Pathol 10: 102–111, 1986

    Google Scholar 

  45. Holden J, Dolman CL, Churg A: Immunohistochemistry of meningiorna including the angioblastic type. J Neuropath Exp Neurol 46: 50–56, 1987

    Google Scholar 

  46. Theaker JM, Gatter KC, Esiri MM, Fleming KA: Epithelial membrane antigen and cytokeratin expression by meningiomas: An immunohistochemical study. J Clin Pathol 39: 435–439, 1986

    Google Scholar 

  47. Karamitopoulou E, Perentes E, Diamantis I: p53 protein expression in central nervous system tumors: an immunohistochemical study with CM1 polyvalent and DO-7 monoclonal antibodies. Acta Neuropathol 85: 611–616, 1993

    Google Scholar 

  48. Mashiyama S, Murakami Y, Yoshimoto T, Sekiya T, Hayashi K: Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 6: 1313–1318, 1991

    Google Scholar 

  49. Wu JK, Zhen Y, Darras BT: Frequency of tumor suppressor gene mutations in human primary brain tumors. Neurosurgery 33: 824–831, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chozick, B.S., Benzil, D.L., Stopa, E.G. et al. Immunohistochemical evaluation of erbB-2 and p53 protein expression in benign and atypical human meningiomas. J Neuro-Oncol 27, 117–126 (1996). https://doi.org/10.1007/BF00177474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177474

Key words

Navigation