, Volume 28, Issue 2, pp 87–98 | Cite as

The Krakatau islands: The geotectonic setting

  • Nishimura Susumu 
  • Harjono H. 
  • Suparka S. 


The Sunda Strait is located in a transitional zone between two different modes of subduction, the Java frontal and Sumatra oblique subductions. Western Java and Sumatra are, however, geologically continuous.

The Krakatau complex lies at the intersection of two graben zones and a north-south active, shallow seismic belt, which coincides with a fracture zone along this seismic belt with fissure extrusion of alkali basaltic rocks commencing at Sukadana and continuing southward as far as the Panaitan island through Rajabasa, Sebuku and Krakatau.

Paleomagnetic studies suggest that the island of Sumatra has been rotating clockwise relative to Java from at least 2.0 Ma to the present at a rate of 5–10h/Ma, and therefore the opening of the Sunda Strait might have started before 2 Ma (Nishimura et al. 1986).

From geomorphological and seismological studies, it is estimated that the western part of Sumatra has been moving northward along the Semangko fault and the southern part of Sunda Strait has been pulled apart.

Assuming that the perpendicular component (58 mm/yr; Fitch 1972) of the oblique subduction has not changed, we can estimate that the subduction started at 7–10 Ma. Huchon and LePichon (1984) also estimated that the subduction started at 13 Ma.

Recent crustal earthquakes in the Sunda Strait area are clustered into three groups: (1) beneath the Krakatau complex where they are typically of tectonic origin, (2) inside a graben in the western part of the strait, and (3) in a more diffuse zone south of Sumatra. The individual and composite focal mechanisms of the events inside the strait show an extensional regime. A stress tensor, deduced from the individual focal mechanisms of the Krakatau group shows that the tensional axis has a N 130°E orientation (Harjono et al. 1988).

These studies confirm that the Sunda Strait is under a tensional tectonic regime as a result of clockwise rotation along the continental margin and northward movement of the Sumatra sliver plate along the Semangko fault zone.


Subduction Fault Zone Continental Margin Focal Mechanism Seismic Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carey-Gailhardis, E.; Mereiner, J.: A numerical method for determining the state of stress using focal mechanisms of earthquarke populations: application to Tibetan teleseisms and microseismicity of Southern Peru. Earth Planet, Sci. Lett. 82, 165–179 (1986)Google Scholar
  2. Curry, J.R.; Moore, D.G.; Lawyer, L.A.; Emmel, F.J.; Raitt, R.W.; Henry, M.; Kieckhefer, R.: Tectonics of the Andaman Sea and Burma. Am. Assoc. Petrol. Geol. Mem. 29, 189–198 (1978)Google Scholar
  3. Fitch, T.J.: Plate convergence, transcurrent faults and internal deformation adjacent to southeast Asia and the Western Pacific. Jour. Geol. Soc. London 77, 4432–4442 (1972)Google Scholar
  4. Harjono, H.: Geodynamique du détroit de la Sonde (Indonésie): apports des données de microsismicité et implications volcanologiques. Thése de Doctorat en-Sciences, Universite Paris-Sud, 262 pp. 1988.Google Scholar
  5. Harjono. H.; Diament, M.; Dubois, J.; Larue, M.: Seismicité du détroit de la Sonde (Indonésie): présentation des résultats d'un réseau local. C. R. Acad. Sci Paris 307, Ser. II, 565–571 (1988)Google Scholar
  6. Harjono, H.; Diament, M.; Nouaili, L.; Dubrois, J.: Detection of magma bodies beneath Krakatau volcanoes (Indonesia) from anomalous shearwaves. J. Vol. Geother. Res. 39, 335–348 (1989)Google Scholar
  7. Hirooka, K.; Otofuji, Y.; Sasajima, S.; Nishimura, S.; Masuda, Y.; Thio, K. H.; Dharma, A.; Hehuwat, F.: An Interim Report of Paleomagnetic Study in Java Island. 67–71 pp. In: Nishimura, S. (ed.), Physical geology of the Indonesian island arcs 1980.Google Scholar
  8. Huchon, P.; LePichon, X.: Sunda Strait and the Central Sumatra fault. Geology, 12, 668–672 (1984)Google Scholar
  9. Lassal, O.; Huchon, P.; Harjono, H.: Extension crustale dans la détroit de la Sonde (Indonésie). Données de la seismique reflexion (campagne KRAKATAU), C. R. Acad. Sci. Paris 309, Ser. II, 205–212 (1989)Google Scholar
  10. Laure, M.: CORINDON IX Cruise Report. 1983.Google Scholar
  11. Mercier, C.: Etude d'un profil de données gravimétriques dans le détroit de la Sunda (Mission CORINDON IX). 78 p. Memoire du DEA Geosciences Univ. Paris-Sud 1985.Google Scholar
  12. Mulhadiono, Asikin, S.: “Pull apart” Basin of Bangkulu offshore promises attractive exploration ventures, 25 p. GEOSA conference, Jakarta 1987.Google Scholar
  13. Ninkovich, D.: Late Cenozoic clockwise rotation of Sumatra. Earth Planet. Sci. Lett 29, 269–275 (1976)Google Scholar
  14. Nishimura, S.; Ikeda, T.; Ishizaka, K.: Geochemistry in volcanic rocks of Krakatau, Indonesia. In: Nishimura, S. (ed.), Physical Geology of the Indonesian Island Arcs. 109–113. Kyoto Univ. Kyoto 1980.Google Scholar
  15. Nishimura, S.; Nishida, J.; Yokoyama, T.; Hehuwat, F.: Neotectonics of the Strait of Sunda, Indonesia. Jour. SE Asian Earth Sci. 1, 81–91 (1986)Google Scholar
  16. Nishimura, S.; Suparka, S.: Tectonics of East Indonesia. Tectonophys. 181, 257–266 (1989)Google Scholar
  17. Noujain, A.K.: Drilling in high temperature and over-pressured area, Pertamina/Amin Oil Well C-1-SX, Sunda Strait, Indonesia, 27 p. Jakarta 1976.Google Scholar
  18. Renard, V.; Chamot-Rooke, N.; Deplus, C.; Diament, M.; Dubois, J.; Ganie, B.; Harjono, H.; Huchon, P.; Jongsm, D.; Kridoharto, P.; Larue, M.; Rigolot, P.; Soekartadiredy, H.; Suhardi, I.; Sumarno, S.; Voisset, M.; Widjajanegra, M.; Wirasantosa, S.: Krakatau '85 Cruise Report. 1985.Google Scholar
  19. Sasajima, S.; Otofuji, Y.; Hirooka, K.; Surpaka, S.; Swijanto, Hehuwat, F.: Paleomagnetic studies on Sumatra Island: Possibility of Sumatra being part of Gondwahaland. In: Nishimura, S. (ed.), Physical Geology of the Indonesian Island Arcs. 114–221. 1980.Google Scholar
  20. Soeria-Atmaja, R.; Maury, R. C.; Bougault, H.; Joron, J. L.; Bellon, H.; Hasanunddin, D.: Présence de tholeiites d'arriere- arc Quatenariés en Indonésie: Les basaltes de Sukadana (Sud de Sumatra), abstract. Réunion des Sciences de la Terre, Clermont-Ferrand 1986.Google Scholar
  21. Untung, M.; Sato, Y.: Gravity and geological studies in Java, Indonesia. Geol. Survey Indonesia and Geol. Survey of Japan, 1978.Google Scholar
  22. Vening Meinesz, F.A.: Gravity Expeditions at Sea. Vol. 1; The Expeditions, Computation and the Results. Waltman, Delft 1934.Google Scholar
  23. Yokoyama, I.; Hadikusumo, O.: Volcanological survey of Indonesian volcanoes, Part 3, A gravity survey on the Krakatau Island, Indonesia. Bull. Earthq. Res. Inst. 47, 991–1001 (1969)Google Scholar
  24. Yokoyama, T.; Hantoro, W.; Hadiwisastra, S.; Matsuda, T.; Nishimura, S.: K-Ar age of the “Lahar Tuff” lowest part of Pucangan formation, Pleistocene of Sangiran, Central Java, Indonesia. RISET 12, 1–7 (1980)Google Scholar
  25. Yokoyama, T.; Hadiwisastra, S.; Hayashida, A.; Hantoro, W.: Preliminary report on paleomagnetism of the Plio-Pleistocene Series in Sangiran and Trinil Areas, Central Java, Indonesia. In: Nishimura, S. (ed.), Physical Geology of the Indonesian Island Arcs, 88–96, 1980.Google Scholar
  26. Yokoyama, T.; Nishimura, S.; Abe, E.; Otofuji, Y.; Ikeda, T.; Suparka, S.; Dharma, A.: Volcano-, magneto-, and chronostratigraphy and geologic structure of Danau Toba, Sumatra Island. 122–143. In: Nishimura, S. (ed.), Physical Geology of the Indonesian Island Arcs, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Nishimura Susumu 
    • 1
  • Harjono H. 
    • 2
  • Suparka S. 
    • 2
  1. 1.Department of Geology and MineralogyKyoto UniversityKyotoJapan
  2. 2.Research and Development Center for GeotechnologyIndonesian Institute of SciencesBandungIndonesia

Personalised recommendations