Skip to main content
Log in

Mass motions due to shock propagations along low-lying loops in the solar atmosphere

On the formation of fibrils

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The formation of fibrils in low-lying loops is investigated by performing one-dimensional nonlinear hydrodynamic calculations. The loops have the height of 3000–5000 km and have an atmosphere extending from the photosphere to the corona. A shock wave is generated from a pressure pulse in the photosphere and it ejects the chromosphere-corona transition region along the loop, expanding the underlying chromosphere into the corona. This expanding chromospheric material in a loop is regarded as a fibril. The shock propagates in the corona and collides with another transition region where a reflected shock and a penetrating shock are generated. The effect of the reflected shock on the motion of the fibril is weak. The fibril shows a nearly ballistic motion as observations suggest, if it does not extend beyond the summit of the loop. The corona in the loop is compressed nearly adiabatically by the fibril, and the enhanced coronal pressure leads the fibril finally to a retracting motion even if the fibril goes beyond the summit of the loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athay, R. G.: 1976, The Solar Chromosphere and Corona: Quiet Sun, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Bird, G. A.: 1964, Astrophys. J. 139, 675.

    Google Scholar 

  • Boris, J. P. and Book, D. L.: 1973, J. Comp. Phys. 11, 38.

    Google Scholar 

  • Foukal, P.: 1971a, Solar Phys. 19, 59.

    Google Scholar 

  • Foukal, P.: 1971b, Solar Phys. 20, 298.

    Google Scholar 

  • Gabriel, A. H.: 1976, Phil. Trans. Roy. Soc. London A281, 339.

    Google Scholar 

  • Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y.: 1971, Solar Phys. 18, 347.

    Google Scholar 

  • Giovanelli, R. G.: 1978, Solar Phys. 59, 293.

    Google Scholar 

  • Hollweg, J. V.: 1982, Astrophys. J. 257, 345.

    Google Scholar 

  • Hollweg, J. V., Jackson, S., and Galloway, D.: 1982, Solar Phys. 75, 99.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Marsh, K. A.: 1976, Solar Phys. 50, 37.

    Article  MATH  Google Scholar 

  • Nakagawa, Y. and Steinolfson, R. S.: 1976, Astrophys. J. 207, 296.

    Google Scholar 

  • Shibata, K.: 1983, Publ. Astron. Soc. Japan 35, 263.

    Google Scholar 

  • Shibata, K., Nishikawa, T., Kitai, R., and Suematsu, Y.: 1982, Solar Phys. 77, 121.

    Google Scholar 

  • Shibata, K. and Suematsu, Y.: 1982, Solar Phys 78, 333.

    Google Scholar 

  • Suematsu, Y., Shibata, K., Nishikawa, T., and Kitai, R.: 1982, Solar Phys. 75, 99 (Paper I).

    Google Scholar 

  • Stein, R. F. and Leibacher, J.: 1974, Ann. Rev. Astron. Astrophys. 12, 407.

    Google Scholar 

  • Stenflo, J. O.: 1976, in V. Bumba and J. Kleczek (eds.), ‘Basic Mechanisms of Solar Activity’, IAU Symp. 71, 69.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 261.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suematsu, Y. Mass motions due to shock propagations along low-lying loops in the solar atmosphere. Sol Phys 98, 67–90 (1985). https://doi.org/10.1007/BF00177200

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177200

Keywords

Navigation