Skip to main content
Log in

Ion dynamics in the Venus ionosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Dynamics play an important role in defining the characteristics of the Venus ionosphere. The absence of a significant internal magnetic field at Venus allows the ionization to respond freely to gradients in the plasma pressure. The primary response to a gradient in plasma pressure is the nightward flow of the ionization away from a photoionization source on the dayside. The flow is approximately symmetric about the Sun-Venus axis and provides the source of O+ that maintains the nightside ionosphere during solar maximum. Modelling efforts have generally been successful in describing the average nightward ion velocity. Asymmetric and temporally-variable flow is measured, but is not well described by the models. Departures from axially-symmetric flow described in this paper include ionospheric superrotation at low altitudes and an enhanced flow at high altitude at the dawn terminator. Variability that is the result of changes in the ionopause height induced by changes in solar wind dynamic pressure is especially strong on the nightside. Ion flow to the nightside is also reduced during solar minimum because of a depressed ionopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, P. M. and Kockarts, G.: 1973, Aeronomy, Academic Press, New York.

    Google Scholar 

  • Bauer, S. J.: 1973, Physics of Planetary Ionospheres, Springer-Verlag, Berlin.

    Google Scholar 

  • Bougher, S. W. and Cravens, T. E.: 1984, ‘Two-Dimensional Model of the Nightside Ionosphere of Venus: Ion Energetics’, J. Geophys. Res. 89, 3837.

    Google Scholar 

  • Brace, L. H. and Kliore, A. J.: 1991, ‘The Structure of the Venus Ionosphere’, Space Sci. Rev. 55, 81.

    Google Scholar 

  • Braginskii, S.: 1958, ‘Transport Phenomena in a Completely Ionized Two-Temperature Plasma’, Soviet Phys. JETP 6, 358.

    Google Scholar 

  • Chen, R. H.: 1977, ‘The Venus Ionosphere’, Ph.D. Thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Chen, R. H. and Nagy, A. F.: 1978, ‘A Comprehensive Model of the Venus Ionosphere’, J. Geophys. Res. 83, 1133.

    Google Scholar 

  • Cloutier, P. A.: 1984, ‘Formation and Dynamics of Large-Scale Magnetic Structures in the Ionosphere of Venus’, J. Geophys. Res. 89, 2401.

    Google Scholar 

  • Cloutier, P. A., Tascione, T. F., and Daniell, R. E., Jr.: 1981, ‘An Electrodynamic Model of Electric Currents and Magnetic Fields in the Dayside Ionosphere of Venus’, Planetary Space Sci. 29, 635.

    Google Scholar 

  • Cloutier, P. A., Tascione, T. F., Daniell, R. E., Jr., Taylor, H. A., Jr., and Wolff, R. S.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘Physics of the Interaction of the Solar Wind with the Ionosphere of Venus: Flow/Field Models’, Venus, Univ. Arizona Press, Tucson, pp. 941–979.

    Google Scholar 

  • Cloutier, P. A., Taylor, H. A., Jr., and McGary, J. A.: 1987, ‘Steady State Flow/Field Model of Solar Wind Interaction with Venus: Global Implications of Local Effects’, J. Geophys. Res. 92, 7289.

    Google Scholar 

  • Colin, L.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘Basic Facts about Venus’, Venus, Univ. Arizona Press, Tucson, pp. 941–979.

    Google Scholar 

  • Cravens, T. E., Kliore, A. J., Kozyra, J. U., and Nagy, A. F.: 1981, ‘The Ionospheric Peak on the Venus Dayside’, J. Geophys. Res. 86, 11323.

    Google Scholar 

  • Cravens, T. E., Brace, L. H., Taylor, H. A., Jr., Russell, C. T., Knudsen, W. C., Miller, K. L., Barns, A., Mihalof, J. D., Scarf, F. L., Quenon, S. J., and Nagy, A. F.: 1982, ‘Disappearing Ionospheres on the Nightside of Venus’, Icarus 51, 271.

    Google Scholar 

  • Cravens, T. E., Crawford, S. L., Nagy, A. F., and Gombosi, T. I.: 1983, ‘A Two-Dimensional Model of the Ionosphere of Venus’, J. Geophys. Res. 88, 5595.

    Google Scholar 

  • Cravens, T. E., Shinagawa, H., and Nagy, A. F.: 1984, ‘The Evolution of Large-Scale Magnetic Fields in the Ionosphere of Venus’, Geophys. Res. Letters 11, 267.

    Google Scholar 

  • Elphic, R. C., Brace, L. H., Theis, R. F., and Russell, C. T.: 1984a, ‘Venus Dayside Ionospheric Conditions: Effects of Ionospheric Magnetic Field and Solar EUV Flux’, Geophys. Res. Letters 11, 124.

    Google Scholar 

  • Elphic, R. C., Mayr, H. G., Theis, R. F., Brace, L. H., Miller, K. L., and Knudsen, W. C.: 1984b, ‘Nightward Ion Flow in the Venus Ionosphere: Implications of Momentum Balance’, Geophys. Res. Letters 11, 1007.

    Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Gosling, J. T.: 1979, ‘Long-Term Solar Wind Electron Variations between 1971 and 1978’, J. Geophys. Res. 84, 7371.

    Google Scholar 

  • Gombosi, T. I., Cravens, T. E., Nagy, A. F., Elphic, R. C., and Russell, C. T.: 1980, ‘Solar Wind Absorption by Venus’, J. Geophys. Res. 85, 7747.

    Google Scholar 

  • Gringauz, K. I., Verigin, M. I., Breus, T. K., and Gombosi, T.: 1979, ‘The Interaction of Electrons in the Optical Umbra of Venus with the Planetary Atmosphere — The Origin of the Nighttime Ionosphere’, J. Geophys. Res. 84, 2123.

    Google Scholar 

  • Gringauz, K. I., Verigin, M. I., Breus, T. K., and Shvachunova, L. A.: 1983, ‘On the Prevailing Ionization Source in the Main Ionization Peak of the Nightside Ionosphere of Venus’, Kosmich Issled. 21, 746.

    Google Scholar 

  • Hedin, A. E., Niemann, H. B., Kasprzak, W. T., and Seiff, A.: 1983, ‘Global Empirical Model of the Venus Thermosphere’, J. Geophys. Res. 88, 73.

    Google Scholar 

  • Heroux, L. and Hinteregger, H. E.: 1978, ‘Aeronomical Reference Spectrum for Solar UV below 2000 Å’, J. Geophys. Res. 83, 5305.

    Google Scholar 

  • Hinteregger, H.: 1979, ‘Development of Solar Cycle 21 Observed in EUV Spectrum and Atmospheric Absorption’, J. Geophys. Res. 84, 1933.

    Google Scholar 

  • Hinteregger, H.: 1981, ‘Representations of Solar EUV Fluxes for Aeronomical Applications’, Adv. Space Res. 1, 39.

    Google Scholar 

  • Kar, J. and Mahajan, K. K.: 1987, ‘On the Response of Ionospheric Magnetization to Solar Wind Dynamic Pressure from Pioneer Venus Measurements’, Geophys. Res. Letters 14, 507.

    Google Scholar 

  • Keating, G. M., Nicholson, J. Y., and Lake, L. R.: 1980, ‘Venus Upper Atmosphere Structure’, J. Geophys. Res. 85, 7941.

    Google Scholar 

  • Knudsen, W. C.: 1988, ‘Solar Cycle Changes in the Morphology of the Venus Ionosphere’, J. Geophys. Res. 93, 8756.

    Google Scholar 

  • Knudsen, W. C.: 1990, ‘Role of Hot Oxygen in Venusian Ionospheric Ion Energetics and Supersonic Antisunward Flow’, J. Geophys. Res. 95, 1097.

    Google Scholar 

  • Knudsen, W. C., Miller, K. L., and Spenner, K.: 1985, ‘Improved Venus Ionopause Altitude Calculation and Comparison with Measurement’, J. Geophys. Res. 87, 2246.

    Google Scholar 

  • Knudsen, W. C., Bakke, J. C., Spenner, K., and Novak, V.: 1979, ‘Retarding Potential Analyzer for the Pioneer-Venus Orbiter Mission’, Space Sci. Instr. 4, 351.

    Google Scholar 

  • Knudsen, W. C., Spenner, K., Miller, K. L., and Novak, V.: 1980a, ‘Transport of Ionospheric O+ Ions Across the Venus Terminator and Implications’, J. Geophys. Res. 85, 7803.

    Google Scholar 

  • Knudsen, W. C., Spenner, K., Whitten, R. C., and Miller, K. L.: 1980b, ‘Ion Energetics in the Venus Nightside Ionosphere’, Geophys. Res. Letters 7, 1045.

    Google Scholar 

  • Knudsen, W. C., Spenner, K., Bakke, J., and Novak, V.: 1980c, ‘Pioneer Venus Orbiter Palanar Retarding Potential Analyzer Plasma Experiment’, IEEE Transactions on Geoscience and Remote Sensing GE-18, 54.

    Google Scholar 

  • Knudsen, W. C., Spenner, K., and Miller, K. L.: 1981, ‘Anti-Solar Acceleration of Ionospheric Plasma Across the Venus Terminator’, Geophys. Res. Letters 8, 241.

    Google Scholar 

  • Knudsen, W. C., Banks, P. M., and Miller, K. L.: 1982a, ‘A Model of Plasma Motion and Planetary Magnetic Fields for Venus’, Geophys. Res. Letters 9, 765.

    Google Scholar 

  • Knudsen, W. C., Miller, K. L., and Spenner, K.: 1982b, ‘Improved Venus Ionopause Altitude Calculation and Comparison with Measurement’, J. Geophys. Res. 87, 2246.

    Google Scholar 

  • Knudsen, W. C., Miller, K. L., and Spenner, K.: 1986, ‘Median Density Altitude Profiles of the Major Ions in the Central Nightside Venus Ionosphere’, J. Geophys. Res. 91, 11936.

    Google Scholar 

  • Knudsen, W. C., Kliore, A. J., and Whitten, R. C.: 1987, ‘Solar Cycle Changes in the Ionization Sources of the Nightside Venus Ionosphere’, J. Geophys. Res. 92, 13391.

    Google Scholar 

  • Luhmann, J. G. and Cravens, T. E.: 1991, ‘Magnetic Fields in the Ionosphere of Venus’, Space Sci. Rev. 55, 201.

    Google Scholar 

  • Luhmann, J. G., Russell, C. T., and Elphic, R. C.: 1984, ‘Time-Scales for the Decay of Induced Large-Scale Magnetic Fields in the Venus Ionosphere’, J. Geophys. Res. 89, 362.

    Google Scholar 

  • Luhmann, J. G., Russell, C. T., Scarf, F. L., Brace, L. H., and Knudsen, W. C.: 1987, ‘Characteristics of the Marslike Limit of the Venus-Solar Wind Interaction’, J. Geophys. Res. 92, 8545.

    Google Scholar 

  • Mahajan, K. K. and Kar, J.: 1988, ‘Planetary Ionospheres’, Space Sci. Rev. 47, 303.

    Google Scholar 

  • Mahajan, K. K., Mayr, H. G., Brace, L. H., and Cloutier, P. A.: 1989, ‘On the Lower Altitude Limit of the Venusian Ionopause’, Geophys. Res. Letters 16, 759.

    Google Scholar 

  • Mayr, H. G., Harris, I., Niemann, H. B., Brinton, H. C., Spencer, N. W., Taylor, H. A., Hartle, R. E., Hoegy, W. R., and Hunten, D. M.: ‘Dynamic Properties of the Thermosphere Inferred from Pioneer Venus Mass Spectrometer Measurements’, J. Geophys. Res. 85, 7841.

  • Mayr, H. G., Harris, I., Stevens-Rayburn, D. R., Niemann, H. B., Taylor, H. A. Jr., and Hartle, R. E.: 1985, ‘On the Diurnal Variations in the Temperature and Composition: A Three-Dimensional Model with Superrotation’, Adv. Space Res. 5, 109.

    Google Scholar 

  • McCormick, P. T., Whitten, R. C., and Knudsen, W. C.: 1987, ‘Dynamics of the Venus Ionosphere Revisited’, Icarus 70, 469.

    Google Scholar 

  • Merritt, D. and Thompson, K.: 1980, ‘Thermal Energy Transport in the Venus Ionosphere: Classical and Saturated Electron Temperature Profiles’, J. Geophys. Res. 85, 6778.

    Google Scholar 

  • Miller, K. L. and Knudsen, W. C.: 1987, ‘Spatial and Temporal Variations of the Ion Velocity Measured in the Venus Ionosphere’, Adv. Space Res. 7(12), 107.

    Google Scholar 

  • Miller, K. L., Knudsen, W. C., Spenner, K., Whitten, R. C., and Novak, V.: 1980, ‘Solar Zenith Angle Dependence of Ionospheric Ion and Electron Temperatures and Density on Venus’, J. Geophys. Res. 85, 7759.

    Google Scholar 

  • Miller, K. L., Knudsen, W. C., and Spenner, K.: 1984, ‘The Dayside Venus Ionosphere. I. Pioneer-Venus Retarding Potential Analyzer Experimental Observations’, Icarus 57, 386.

    Google Scholar 

  • Nagy, A. F. and Cravens, T. E.: 1988, ‘Hot Oxygen Atoms in the Atmospheres of Venus and Mars’, Geophys. Res. Letters 15, 433.

    Google Scholar 

  • Nagy, A. F., Cravens, T. E., Smith, S. G., Taylor, H. A., Jr., and Brinton, H. C.: 1980, ‘Model Calculations of the Dayside Ionosphere of Venus: Ionic Composition’, J. Geophys. Res. 85, 7795.

    Google Scholar 

  • Nagy, A. F., Cravens, T. E., Lee, J. H., and Stewart, A. E. F.: 1981, ‘Hot Oxygen Atoms in the Upper Atmosphere of Venus’, Geophys. Res. Letters 8, 629.

    Google Scholar 

  • Nakada, M. P. and Sullivan, E. C.: 1980, ‘Thermal Diffusion Calculations for the Ionosphere of Venus’, J. Geophys. Res. 85, 171.

    Google Scholar 

  • Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M., and Spencer, N. W.: 1980, ‘Mass Spectrometric Measurements of the Neutral Gas Composition of the Thermosphere and Exosphere of Venus’, J. Geophys. Res. 85, 7817.

    Google Scholar 

  • Oppenheimer, M., Babeu, S., and Brinton, H. C.: 1981, ‘EUV Flux Variations During Solar Cycle 21 from AE-E He+ Abundances’, J. Geophys. Res. 86, 825.

    Google Scholar 

  • Paxton, L. J. and Stewart, A. E.: 1988, ‘The Hot Oxygen Corona of Venus’, J. Geophys. Res. (submitted).

  • Perez-de-Tejada, H.: 1982, ‘Viscous Dissipation at the Venus Ionopause’, J. Geophys. Res. 87, 7405.

    Google Scholar 

  • Phillips, J. L., Luhmann, J. G., Knudsen, W. C., and Brace, L. H.: 1988, ‘Asymmetries in the Location of the Venus Ionopause’, J. Geophys. Res. 93, 3927.

    Google Scholar 

  • Rohrbaugh, R. P., Nisbet, J. S., Bleuler, E., and Herman, J. R.: 1979, ‘The Effect of Energetically Produced O +2 on the Ion Temperatures of the Martian Thermosphere’, J. Geophys. Res. 84, 3327.

    Google Scholar 

  • Russell, C. T., Elphic, R. C., and Slavin, J. A.: 1980, ‘Limits on the Possible Intrinsic Magnetic Field of Venus’, J. Geophys. Res. 85, 8319.

    Google Scholar 

  • Russell, C. T., Luhmann, J. G., and Elphic, R. C.: 1983, ‘The Properties of the Low Altitude Magnetic Belt in the Venus Ionosphere’, Adv. Space Res. 2, 13.

    Google Scholar 

  • Schubert, G.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘General Circulation and the Dynamical State of the Venus Atmosphere’, Venus, Univ. Arizona Press, Tucson, pp. 681–765.

    Google Scholar 

  • Schunk, R. and Walker, J. C. G.: 1969, ‘Thermal Diffusion in the Topside Ionosphere for Mixtures which Include Multiply-Charged Ions’, Planetary Space Sci. 17, 853.

    Google Scholar 

  • Shinagawa, H. and Cravens, T. E.: 1988, ‘A One-Dimensional Multispecies Magnetohydrodynamic Model of the Dayside Ionosphere of Venus’, J. Geophys. Res. 93, 11263.

    Google Scholar 

  • Shinagawa, H., Cravens, T. E., and Nagy, A. F.: 1987, ‘A One-Dimensional Time-Dependent Model of the Magnetized Ionosphere of Venus’, J. Geophys. Res. 92, 7317.

    Google Scholar 

  • Singhal, R. P. and Whitten, R. C.: 1986, ‘A Two-Dimensional Model of the Ionosphere of Venus: Thermal Structure’, Icarus 67, 325.

    Google Scholar 

  • Singhal, R. P. and Whitten, R. C.: 1987, ‘A Simple Spectral Model of the Dynamics of the Venus Ionosphere’, J. Geophys. Res. 92, 5735.

    Google Scholar 

  • Singhal, R. P. and Whitten, R. C.: 1988, ‘Horizontal Plasma Flow Velocities in the Ionosphere of Mars: A Test Case for the Solar Wind Interaction’, Ind. J. Radio Space Res. 17, 42.

    Google Scholar 

  • Spenner, K., Knudsen, W. C., Whitten, R. C., Michelson, P. F., Miller, K. L., and Novak, V.: 1981, ‘On the Maintenance of the Venus Nighttime Ionosphere: Electron Precipitation and Plasma Transport’, J. Geophys. Res. 86, 9170.

    Google Scholar 

  • Taylor, H. A., Jr., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., Michel, F. C., Daniell, R. E., Donahue, T. M., and Maehl, R. C.: 1979, ‘Ionosphere of Venus: First Observations of the Effects of Dynamics on the Dayside Ion Composition’, Science 203, 755.

    Google Scholar 

  • Taylor, H. A., Jr., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H., and Cordier, G. R.: 1980a, ‘Bennett Ion Mass Spectrometers on the Pioneer Venus Bus and Orbiter’, IEEE Transactions on Goescience and Remote Sensing GE-18, 44.

    Google Scholar 

  • Taylor, H. A., Jr., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., and Daniell, R. E.: 1980b, ‘Global Observations of the Composition and Dynamics of the Ionosphere of Venus: Implications for the Solar Wind Interaction’, J. Geophys. Res. 85, 7765.

    Google Scholar 

  • Taylor, H. A., Jr., Bauer, S. J., Daniell, R. E., Brinton, H. C., Mayr, H. E., and Hartle, R. E.: 1981a, ‘Temporal and Spatial Variations Observed in the Ionospheric Composition of Venus — Implications for Empirical Modelling’, Adv. Space Res. 1, 37.

    Google Scholar 

  • Taylor, H. A. Jr., Daniell, R. E., Hartle, R. E., Brinton, H. C., Bauer, S. J., and Scarf, F. L.: ‘Dynamic Variations Observed in Thermal and Superthermal Ion Distributions in the Dayside Ionosphere of Venus’, Adv. Space Res. 1, 247.

  • Theis, R. F., Brace, L. H., Elphic, R. C., and Mayr, H. G.: 1984, ‘New Empirical Models of the Electron Temperature and Density in the Venus Ionosphere with Application to Transterminator Flow’, J. Geophys. Res. 89, 1477.

    Google Scholar 

  • Von Zahn, U., Fricke, K. H., Hunten, D. M., Krankowsky, D., Mauersberger, K., and Nier, A. O.: 1980, ‘The Upper Atmosphere of Venus During Morning Conditions’, J. Geophys. Res. 85, 7829.

    Google Scholar 

  • Whitten, R. C.: 1969, ‘Thermal Structure of the Ionosphere of Venus’, J. Geophys. Res. 74, 5623.

    Google Scholar 

  • Whitten, R. C. and Knudsen, W. C.: 1980, ‘Simple Models of the Thermal Structure of the Venusian Ionosphere’, Icarus 44, 85.

    Google Scholar 

  • Whitten, R. C., Baldwin, B., Knudsen, W. C., Miller, K. L., and Spenner, K.: 1982, ‘The Venus Ionosphere at Grazing Incidence of Solar Radiation: Transport of Plasma to and in the Nightside’, Icarus 51, 261.

    Google Scholar 

  • Whitten, R. C., McCormick, P. T., Merritt, D., Thompson, K. W., Brynsvold, R, R., Eich, C. J., Knudsen, W. C., and Miller, K. L.: 1984, ‘Dynamics of the Venus Ionosphere: A Two-Dimensional Model Study’, Icarus 60, 317.

    Google Scholar 

  • Whitten, R. C., Singhal, R. P., and Knudsen, W. C.: 1986, ‘Thermal Structure of the Venus Ionosphere: A Two-Dimensional Model Study’, Geophys. Res. Letters 13, 10.

    Google Scholar 

  • Wolff, R. S., Stein, R. F., and Taylor, H. A., Jr.: 1982, ‘The Dynamics of the Venus Ionosphere. 1. A Simulation of the Solar Wind Compressin of the Upper Dayside Ionosphere’, J. Geophys. Res. 87, 8118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.L., Whitten, R.C. Ion dynamics in the Venus ionosphere. Space Sci Rev 55, 165–199 (1991). https://doi.org/10.1007/BF00177137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177137

Keywords

Navigation