Skip to main content
Log in

Attitude stabilization and control of earth satellites

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this paper a survey is made of some aspects of satellite attitude stabilization and control. After a brief discussion of the equations of motion governing the satellite's behaviour, the various disturbing torques acting on a satellite in a space environment are considered. Quantitative values for a hypothetical satellite are discussed. Next, attention is given to several methods of attitude stabilization and control. The analysis is based on the various means to exert torques on the satellite for control purposes. Passive methods, such as spin-stabilization and gravity-gradient stabilization, are discussed in some detail. Not only are the basic principles involved indicated, but also some quantitative values of the variables concerned are mentioned where possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abzug, M. J.: 1962, ‘Satellite inertia-wheel attitude control on elliptical orbits’, Engineering Paper No. 1384, 1962 Symposium on Ballistic Missile and Space Technology, Colorado Springs.

  • Abzug, M. J.: 1963, ‘Active satellite attitude control’ in C.Leondes (ed.), Guidance and Control of Aerospace Vehicles, McGraw-Hill Book Company, New York, Ch. 8.

    Google Scholar 

  • Acord, J. D. and Nicklas, J. C.: 1964, ‘Theoretical and Practical aspects of solar pressure attitude control for interplanetary spacecraft’, Progress in Astronautics and Aeronautics 13, 73–91.

    Google Scholar 

  • Adams, J. J. and Brissenden, R. F.: 1960, ‘Satellite attitude control using a combination of inertia wheels and a bar magnet’, NASA Technical Note D-626.

  • Adams, J. J., Howell, W. E., and Bergeron, H. P.: 1963, ‘Simulator study of a satellite attitude control system using inertia wheels and a magnet’, NASA Technical Note D-1969.

  • Brown, S. C.: 1961, ‘Predicted performance of on-off systems for precise satellite attitude control’, NASA Technical Note D-1040.

  • Burt, E. G. C.: 1962, ‘On the attitude control of earth satellites’, R.A.E. Techn. Note, Space 3

  • Cannon Jr., R. H.: 1962, ‘Some basic response relations for reaction wheel attitude control’, ARS Journal 32, 61–74.

    Google Scholar 

  • Chin, T. H.: 1963, ‘Spacecraft stabilization and attitude control’, Space/Aeronautics 37, 88–93, 144–147.

    Google Scholar 

  • Comille Jr., H. J.: 1962, ‘A method of accurately reducing the spin rate of a rotating spacecraft’, NASA Technical Note D-1420.

  • DeLisle, J. E., Ogletree, E. G., and Hildebrant, B. M.: 1964, ‘Applications gyrostabilizers to satellite attitude control’, Progress in Astronautics and Aeronautics 13 (Guidance and Control II), 149–184.

    Google Scholar 

  • Deutsch, R.: 1963, ‘Orbital dynamics of space vehicles’, Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. 222–224.

    Google Scholar 

  • Dzilvelis, A.: 1963, ‘Satellite Attitude control systems’, Astronautics and Aerospace Engineering 1 78–82.

    Google Scholar 

  • Ergin, E. I.: 1964, ‘Current status of progress in attitude control’, Progress in Astronautics and Aeronautics 13, (Guidance and Control II), pp. 7–36.

    Google Scholar 

  • Etkin, B.: 1962, ‘Attitude stability of articulated gravity-oriented satellites’' (Part I: ‘General theory, and motion in orbital plane’), UTIA Report No. 89, Toronto.

  • Fedor, J. V.: 1961, ‘Theory and design curves for a yo-yo de-spin mechanism for satellites’, NASA Technical Note D-708.

  • Fedor, J. V.: 1963, ‘Analytical theory of the stretch yo-yo for de-spin of satellites’, NASA Technical Note D-1676.

  • Fischell, R. E., 1961, ‘Magnetic damping of the angular motions of earth satellites’, ARS Journal 31, 1210–1217.

    Google Scholar 

  • Fischell, R. E. and Mobbey, F. F.: 1964, ‘A system for passive gravity-gradient stabilization of earth satellites’, Progress in Astronautics and Aeronautics 13 (Guidance and Control II), pp. 37–71.

    Google Scholar 

  • Frye, W. E. and Stearns, E. V. B.: 1959, ‘Stabilization and attitude control of satellite vehicles’, ARS Journal 29, 927–931.

    Google Scholar 

  • Gillespie Jr., W., Eide, D. E., and Churgin, A. B.: 1959, ‘Some notes on attitude control of earth sateUite vehicles’, NASA Technical Note D-40.

  • Grasshoff, L. H.: 1961a, ‘Eddy current torque compensation in a spin-stabilized earth satellite’, ARS Journal 31, 290–293.

    Google Scholar 

  • Grasshoff, L. H.: 1961b, ‘A method for controlling the attitude of a spin-stabilized satellite’, ARS Journal 31, 646–649.

    Google Scholar 

  • Grubin, C.: 1960, ‘Exact limit-cycle solutions for the single-axis reaction wheel attitude control system’, Proceedings of the XIth International Astronautical Congress, Stockholm, Vol. 1, pp. 537–548.

  • Haeussermann, W.: 1959, ‘An attitude control system for space vehicles’, ARS Journal 29, 203–207.

    Google Scholar 

  • Haeussermann, W.: 1962, ‘Recent advances in attitude control of space vehicles’, ARS Journal 32, 188–195.

    Google Scholar 

  • Hering, K. W. and Hufnagel, R. W.: 1961, ‘Inertial sphere system for complete attitude control of earth satellites’, ARS Journal 31, 1074–1079.

    Google Scholar 

  • Holl, H. B.: 1961, ‘The effect of radiation force on satellites of convex shape’, NASA Technical Note D-604.

  • Ives, N. E.: 1962, ‘Principles of attitude control of artificial satellites’, Reports and Memoranda No. 3276.

  • Ives, N. E.: 1963, ‘The effect of solar radiation pressure on the attitude control of an artificial earth satellite’, Reports and Memoranda No. 3332.

  • Kamm, L. J.: 1961, ‘Magnetorquer — a satellite orientation device’, ARS Journal 31, 813–815.

    Google Scholar 

  • Kamm, L. J.: 1962, ‘“Vertistat”: An Improved Satellite orientation device’, ARS Journal 32, 911–913.

    Google Scholar 

  • Kershner, R. B.: 1963, ‘Gravity-gradient stabilization of satellites’, Astronautics and Aerospace Engineering 1, 18–22.

    Google Scholar 

  • Koelle, H. H. (ed.): 1961, Handbook of Astronautical Engineering, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Maeda, H.: 1963, ‘Attitude stability of articulated gravity-oriented satellites’, Part II: Lateral Motion, UTIA Report No. 93, Toronto.

  • Magnus, K.: 1963, ‘Beiträge der Untersuchung der Drehbewegungen starrer Satelliten auf kreisförmigen Umlaufbahnen’, Jahrbuch 1963 der Wissenschaftlichen Gesellschaft für Luft- und Raumfahrt (WGLR), pp. 174–180.

  • Mentzer, W. R.: 1963, ‘Analysis of the dynamic tests of the stretch yo-yo de-spin system’, NASA Technical Note D-1902.

  • Moyer, R. G. and Katucki, R. J.: 1964, ‘A system for passive control of satellites through the viscous coupling of gravity gradient and magnetic fields’, AA1A Paper No. 64-659.

  • Newton, R. T.: 1960, ‘Stabilizing a spherical satellite by radiation pressure’, ARS Journal 30, 1175–1177.

    Google Scholar 

  • Ormsby, R. D. and Smith, M. C.: 1961, ‘Capabilities and limitations of reaction spheres for attitude control’, ARS Journal 31, 808–812.

    Google Scholar 

  • Pistiner, J. S.: 1959, ‘On-off control system for attitude stabilization of a space vehicle’, ARS Journal 29, 283–289.

    Google Scholar 

  • Roberson, R. E.: 1960, ‘Methods for the control of satellites and space vehicles’ Vol. 1–3, Wright-Patterson AFB, Ohio, WADD TR 60-643.

  • Savet, P. H.: 1962, ‘Attitude control of orbiting satellites at high eccentricity’, ARS Journal 32, 1577–1582.

    Google Scholar 

  • Scott, E. D.: 1964, ‘Control moment gyro gravity stabilization’, Progress in Astronautics and Aeronautics 13 (Guidance and Control, II), pp. 103–148.

    Google Scholar 

  • Sirri, N.: 1962, ‘Space vehicle attitude control’ in Navigation Systems for Aircraft and Space Vehicles (T. G. Thorne, ed.), AGARDograph 55, Pergamon Press, Oxford.

    Google Scholar 

  • Sohn, R. L.: 1959, ‘Attitude stabilization by means of solar radiation pressure’, ARS Journal 29, 371–373.

    Google Scholar 

  • Taylor Jr., L. W. and Smith, J. W.: 1961, ‘An analytical approach to the design of an automatic discontinuous control system’, NASA Technical Note D-630.

  • Thomson, W. T.: 1961, Introduction to Space Dynamics, J. Wiley and Sons, New York.

    Google Scholar 

  • Thomson, W. T.: 1963, ‘Passive attitude control of satellite vehicles’, in Guidance and Control of Satellite Vehicles (ed. by C. Leondes), McGraw-Hill Book Company, New York, Ch. 7.

    Google Scholar 

  • Tinling, B. E. and Merrick, V. K.: 1964, ‘Exploitation of inertial coupling in passive gravitygradient-stabilized satellites’, J. Spacecraft 1, 381–387.

    Google Scholar 

  • Tripp, C. N. and Boardman, W. P.: 1961, ‘Attitude control rockets requirements for space vehicles’, National IAS/ARS Joint Meeting, Paper No. 61-205-1899.

  • White, C. E.: 1962, ‘Spacecraft sensors’, Space/Aeronautics 37, 70–72.

    Google Scholar 

  • White, J. S. and Hansen, Q. M.: 1961, ‘Study of systems using inertia wheels for precise attitude control of a satellite’, NASA Technical Note D-691.

  • White, J. S., Shigemoto, F. H., and Bourquin, K.: 1961, ‘Satellite attitude control utilizing the earth's magnetic field’, NASA Technical Note D-1068.

  • Whitford, R. K.: 1962, ‘Attitude control of earth satellites’, I — Sources of torque; II — Sensing and modes of control’, Control Engineering 9, Febr. 93–97; April 97–101.

  • Wiggins, L. E.: 1964, ‘Relative Magnitudes of the space-environment torques on a satellite’, AIAA Journal 2, 770.

    Google Scholar 

  • Zajac, E. E.: 1962, ‘Damping of a gravitationally oriented two-body satellite’, ARS Journal 32, 1871–1875.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlach, O.H. Attitude stabilization and control of earth satellites. Space Sci Rev 4, 541–582 (1965). https://doi.org/10.1007/BF00177093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177093

Keywords

Navigation