Skip to main content
Log in

Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In the course of an in situ bioremediation, different hydrologically controllable test plots were installed on the ground of a waste-oil contaminated site, and continuously injected with nutrient solution and the electron acceptors NO3 , O2, and H2O2. In a two-year period, groundwater samples obtained from different recovery wells within these field plots, in addition to subsoil samples, were monitored for several chemical and microbiological parameters. The removal of hydrocarbons observed in the water samples could not unambiguously be attributed to biodegradation, and was probably caused by groundwater treatment measures. However, chemical (gaschromatographic) and microbiological data from the subsoil samples indicated a biological degradation of pollutants. Analysis of the groundwater samples of the different test plots revealed only minor quantitative differences. With time, only a slight increase in bacterial numbers on different media, including hydrocarbon-agar, was observed. In general, chemical and microbiological analyses of groundwater samples cannot replace analyses of subsoil samples for a sufficient documentation of in situ remediation processes in subsoil. From the groundwater and subsoil samples, 3,446 pure cultures, obtained from R2A agar, were characterized morphologically and physiologically, and identified in order to study the culturable bacterial communities. Several qualitative differences in composition and diversity of the bacterial communities among the test plots were observed. More than 70 different species or taxonomic groups (most of them known as hydrocarbon degrading taxa) could be identified from the groundwater samples; these were mainly the Gram-negative genera Acinetobacter, Alcaligenes, Comamonas, Hydrogenophaga, Pseudomonas, Flavobacterium/Flexibacter/Cytophaga, and others. A high proportion of Gram-positive organisms (42.5%), belonging to Bacillus and the various genera of coryneform and nocardioform organisms, were isolated from the subsoil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chrisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  2. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed  Google Scholar 

  3. Arendt F, Hinsenveld M, van den Brink WJ (eds) (1990) Altlastensanierung '90. Kluwer Academic Publishers, Dordrecht, Boston

    Google Scholar 

  4. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microb Rev 45:180–209.

    Google Scholar 

  5. Atlas RM (1984) Diversity of microbial communities, In: Marshall KC (ed) Advances in microbial ecology. Plenum Press, New York, pp 1–47

    Google Scholar 

  6. Austin B, Garges S, Conrad B, Harding EE, Colwell RR, Simudu U, Taga N (1979) Comparative study of aerobic, heterotrophic bacteria flora of Chesapeake Bay and Tokyo Bay. Appl Environ Microbiol 37:704–714

    Google Scholar 

  7. Balkwill DL, Ghiorse WC (1985) Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50:580–588

    Google Scholar 

  8. Battermann, G (1986) Decontamination of polluted aquifers by biodegradation. In: Assink JW, van den Brink WJ (eds) Contaminated soils. Nijhoff Publishers, Dordrecht, pp 711–722

    Google Scholar 

  9. Bianchi MAG, Bianchi AJM (1982) Statistical sampling of bacterial strains and its use in bacterial diversity measurements. Microb Ecol 8:61–69

    Google Scholar 

  10. Brock, TD (1987) The study of microorganisms in situ: progress and problems. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities, Symposium 41. The Society of for General Microbiology. Cambridge University Press, Cambridge, pp 1–17

    Google Scholar 

  11. Buchanan-Mappin JM, Wallis PM, Buchanan AG (1986) Enumeration and identification of heterotrophic bacteria in groundwater and in mountain stream. Can J Microbiol 32:93–98

    Google Scholar 

  12. Busse H-J, El-Banna T, Auling G (1989) Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl Environ Microbiol 55:1578–1583

    Google Scholar 

  13. Busse H-J, El-Banna T, Oyaizu H, Auling G (1992) Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int J Syst Bacteriol 42:19–26

    Google Scholar 

  14. Deutsche Einheitsverfahren zur Wasseruntersuchung, DEV (1971, 1981) Mikrobiologische Verfahren, Gruppe K5:1–8; Summarische Wirkungs- und Stoffkenngröβen, H18:1–10. Verlag Chemie, Weinheim.

    Google Scholar 

  15. De Vos P, De Ley J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509

    Google Scholar 

  16. Doetsch, RN (1981) Determinative methods in light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips EB (eds) Manual of methods for general microbiology. American Society for Microbiology, Washington DC, pp 21–33

    Google Scholar 

  17. Fox GE, Wisotzkey JD, Jurtshuk Jr P (1992) How close is close: 16S rRNA sequence identity may not guarantee species identity. Int J Syst Bacteriol 42:166–170

    CAS  PubMed  Google Scholar 

  18. Frederickson JK, Balkwill DL, Zachara JM, Li SMW, Brockman FJ, Simmons MA (1991) Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal plain. Appl Environ Microbiol 57:402–411

    Google Scholar 

  19. Gamble TN, Betlach MR, Tiedje JM (1977) Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33:926–939

    Google Scholar 

  20. Garland JL, Mills AA (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    Google Scholar 

  21. Gassmann G (1981) Chromatographic separation of diasteriomeric isoprenoids for the identification of fossil oil contamination. Mar Pollut Bull 12:78–84

    Google Scholar 

  22. Gehlen M, Trampisch HJ, Dott W (1985) Physiological characterization of heterotrophic bacterial communities from selected aquatic environments. Microb Ecol 11:205–219

    Google Scholar 

  23. Ghiorse WC, Balkwill DL (1983) Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Dev Ind Microbiol 24:213–224

    Google Scholar 

  24. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. Meth Microbiol 513:209–344

    Google Scholar 

  25. Holmes B, Hill LR (1985) Computers in diagnostic bacteriology, including identification. In Goodfellow M, Jones D, Priest FG (eds) Computer assisted bacterial systematics. Academic Press, London, pp 265–287

    Google Scholar 

  26. Holmes B, Owen RJ, McMeekin TA (1984) Genus Flavobacterium Bergey, Harrison, Breed, Hammer, and Huntoon 1923 97AL. In Krieg NR, Holt JH (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 353–361

    Google Scholar 

  27. Jones JG (1987) Diversity in freshwater microbiology. In Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities, Symposium 41. The Society for General Microbiology, Cambridge University Press, Cambridge, pp 235–259

    Google Scholar 

  28. Kämpfer P (1988) Automatisierte Charakterisierung mikrobieller Lebensgemeinschaften Hygiene Berlin 1 Veröffentlichungen aus dem Fachgebiet Hygiene der Technischen Universität Berlin und dem Institut für Hygiene der Freien Universität Berlin ISBN 3 7983 1226 5, Berlin

  29. Kämpfer P (1991) Application of miniaturized physiological tests in numerical classification and identification of some bacilli. J Gen Appl Microbiol 37:225–247

    Google Scholar 

  30. Kämpfer P, Dott W (1988) Differentiation of some Gram-negative glucose nonfermenting bacteria using miniaturized carbon sources assimilation tests. Zentralbl Bakt Hyg B186:468–477

    Google Scholar 

  31. Kämpfer P, Dott W, Kroppenstedt RM (1990) Numerical classification and identification of some nocardioform bacteria. J Gen Appl Microbiol 36:309–331

    Google Scholar 

  32. Kampfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251

    Google Scholar 

  33. Keddie RM, Collins MD, Jones D (1986) Genus Arthrobacter Conn and Dimmick 1947, 300AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JH (eds) Bergey's manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1288–1301

    Google Scholar 

  34. Kölbel-Boelke J, Tienken B, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. I. Methods for isolation and characterization of heterotrophic bacteria. Microb Ecol 16:17–29

    Google Scholar 

  35. Kölbel-Boelke J, Anders EM, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. II. Diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities. Microb Ecol 16:31–48

    Google Scholar 

  36. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microb Rev 54:305–315

    Google Scholar 

  37. Lee MD, Ward CH (1985) Biological methods for the restoration of contaminated aquifers. Environ Toxic Chem 4:743–750

    Google Scholar 

  38. Lee MD, Thomas JM, Borden RC, Bedient PB, Ward CH, Wilson JT (1988) Biorestoration of aquifers contaminated with organic compounds. CRC Crit Rev Environ Contr 18:29–89

    Google Scholar 

  39. Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spills. Appl Environ Microbiol 57:2514–2522

    Google Scholar 

  40. Lipsky A, Klatte S, Bendinger B, Altendorf K (1992) Differentiation of Gram-negative, bacteria isolated from biofilters on the basis of fatty acid composition, quinone system, and physiological reaction profiles. Appl Environ Microbiol 58:2053–2065

    Google Scholar 

  41. Morgan P, Watkinson RJ (1989) Hydrocarbon degradation in soils and methods for soil biotreatment. CRC Crit Rev Biotechnol 8:305–333

    Google Scholar 

  42. Obst U, Holzapfel-Pschorn A (1988) Enzymatische Tests fur die Wasseranalytik. Oldenbourg Verlag, Munich

    Google Scholar 

  43. Olsen RA, Bakken LR (1987) Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbial Ecol 13:59–74

    Google Scholar 

  44. Overbeck J, Chrost RJ (ed) 1990 Aquatic microbial ecology. Springer Verlag, Heidelberg, New York

    Google Scholar 

  45. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC (ed) Advances in microbial ecology, vol 9. Plenum Press, New York, pp 1–55

    Google Scholar 

  46. Palleroni NJ (1984) Genus I Pseudomouas Migula 1894, 237AL. In Krieg NR, Holt JH (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 141–199

    Google Scholar 

  47. Parkes RJ (1987) Analysis of microbial communities within sediments using biomarkers. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities, Symposium 41. The Society of for General Microbiology, Cambridge University Press, Cambridge, pp 147–177

    Google Scholar 

  48. Pfennig N, Lippert KD (1966) Über das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  49. Püttmann W (1988) Microbial degradation of petroleum in contaminated soils—analytical aspects. In: Wolf K, van der Brink WJ, Colon FJ (eds) Contaminated soil '88. Kluwer Academic Publishers, Dordrecht, London, pp 189–199

    Google Scholar 

  50. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    Google Scholar 

  51. Ridgway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl Environ Microbiol 56:3565–3575

    Google Scholar 

  52. Ripper P, Früchtenicht H (1989) Umweltschadensfall Pintsch-Ö1 Hanau: Sanierungsschritte eingeleitet. WLB Wasser Luft Boden 4:60–63

    Google Scholar 

  53. Riss A (1992) Mikrobiologische On-Site und In-Situ-Pilot Versuche zur Sanierung des Altölraffineriestandorts Pintsch, Hanau. In: DECHEMA-Fachgespräche Umweltschutz: Mikrobiologische Reinigung von Böden. DECHEMA, Frankfurt, pp 134–153

    Google Scholar 

  54. Riss A, Barenschee ER, Helmling O, Ripper P (1991) Einsatz von Wasserstoffperoxid zum mikrobiologischen Kohlenwasserstoffabbau. gwf Wasser Abwasser 132:115–126

    Google Scholar 

  55. Rosenberg E(1992) The hydrocarbon-oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd ed, vol 1, Springer-Verlag, New York, pp 446–459

    Google Scholar 

  56. Sayler GS, Shields MS, Tedford E, Breen A, Hooper S, Sirotkin K, Davis J (1985) Application of DNA-DNA colony hybridization for the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49:1295–1303

    Google Scholar 

  57. Smith GA, Nickels JS, Kerger BD, Davis JD, Collins SP (1985) Quantitative characterization of microbial biomass and community structure in subsurface material: a procaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111

    Google Scholar 

  58. Spring S, Amann R, Ludwig W, Schleifer K-H, Petersen N (1992) Phylogenetic diversity and identification of nonculturable, magnetotactic bacteria. Syst Appl Microbiol 15:116–122

    Google Scholar 

  59. Sneath PHA (1979) BASIC program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Comput Geosci 5:195–213

    Google Scholar 

  60. Song HG, Bartha R (1990) Effects of jet fuel spills on the microbial community of soil. Appl Env Microbiol 56:646–652

    Google Scholar 

  61. Steffan RJ, Atlas RM (1991) Polymerase chain reaction: applications in environmental microbiology. Annu Rev Microbiol 45:133–161

    Google Scholar 

  62. Stenström I-M, Molin G (1990) Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68:601–618

    Google Scholar 

  63. Weller R, Weller JW, Ward DM (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55:1818–1822

    Google Scholar 

  64. Westlake DWS, Jobson A, Phillippe R, Cook FD (1974) Biodegradability of crude oil composition. Can J Microbiol 20:915–928

    Google Scholar 

  65. Willcox WR, Lapage SP, Bascomb S, Curtis MA (1973) Identification of bacteria by computer: theory and programming. J Gen Microbiol 77:317–330

    Google Scholar 

  66. Willems A, De Vos P, De Ley J (1992) The genus Comamonas. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd ed, vol 3, Springer-Verlag, New York, pp 2583–2590

    Google Scholar 

  67. Wilson IT, McNabb JF, Balkwill DL, Ghiorse WC (1983) Enumeration and characterization of bacteria indigenous to a shallow watertable aquifer. Groundwater 21:134–142

    Google Scholar 

  68. Wilson JT, McNabb JF, Wilson BH, Noonan NJ (1983) Biotransformation of selected organic pollutants in ground water. Dev Ind Microbiol 24:225–233

    Google Scholar 

  69. Zarda B, Amann R, Wallner G, Schleifer K-H (1991) Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J Gen Microbiol 137:2823–2830

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: P. Kämpfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kämpfer, P., Steiof, M., Becker, P.M. et al. Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site. Microb Ecol 26, 161–188 (1993). https://doi.org/10.1007/BF00177050

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177050

Keywords

Navigation