Skip to main content

Advertisement

Log in

Viability as seen with radiolabelled fatty acids — a new approach to a challenqinq problem

  • Editorial
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    Google Scholar 

  2. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117:211–221.

    Article  CAS  PubMed  Google Scholar 

  3. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol 1986;8:1467–1470.

    CAS  PubMed  Google Scholar 

  4. Ross J. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 1991;83:1976–1083.

    Google Scholar 

  5. Bolli R. Myocardial “tunning” in man. Circulation 1992;86:1671–1691.

    Google Scholar 

  6. Trevi GP, Sheiban I. Chronic ischaemic (“hibernating”) and postischaemic (“stunned”) dysfunctional but viable myocardium. Eur Heart J 1991;12:20–26.

    Google Scholar 

  7. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993;87:1–20.

    CAS  PubMed  Google Scholar 

  8. Schelbert HR. Positron emission tomography for the assessment of myocardial viability. Circulation 1991; 84 Suppl 1: 1122–1131.

    Google Scholar 

  9. Popio KA, Gorlin R, Bechtel A, Levine JA. Postextrasystolic potentiation as a predictor of potential myocardial viability: preoperative analysis compared with studies after coronary bypass surgery. Am J Cardiol 1977;39:944–953.

    Google Scholar 

  10. Hlfant RH, Pine R, Meister SG, Feldman MS, Trout RG, Banka VS. Nitroglycerin to unmask reversible asynergy: correlation with postcoronary bypass ventriculography. Circulation 1974;50:108–113.

    Google Scholar 

  11. Horn HR, Teichholz LE, Cohn PF, Herman MV Gorlin R. Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine: the epinephrine ventriculogram. Circulation 1974;49:1063–1071.

    Google Scholar 

  12. Rozanski A, Berman D, Gray R, Diamond G, Raymond M, Prause J, Maddahi J, Swan HJC, Matloff J. Preoperative prediction of reversible myocardial asynergy by postexercise radionuclide ventriculography. N Engl J Med 1982; 307: 212–216.

    Google Scholar 

  13. Christian TF, Behrenbeck T, Pellikka PA, Huber KC, Chesebro JH, Gibbons RJ. Mismatches of left ventricular function and perfusion with Tc-99m-isonitrile following reperfusion therapy for acute myocardial infarctions: identification of myocardial stunning and hyperkinesia. J Am Coll Cardiol 1990;16:1632–1638.

    Google Scholar 

  14. Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32:1–9.

    Google Scholar 

  15. Taegtmeyer H, Roberts AFC, Raine AEG. Energy metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol 1985; 6:864–870.

    Google Scholar 

  16. Myears DW, Sobel BE, Bergmann SR. Substrate use in ischemic and reperfused canine myocardium: quantitative considerations. Am J Physiol 1987;253 (Heart Circ Physiol 22:H107-H114).

    Google Scholar 

  17. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circulation Res 1988;62:535–542.

    Google Scholar 

  18. Schwaiger M, Schelbert HR, Ellison D, Hansen H, Yeatman L, Vinten-Johansen JV, Selin C, Barrio J, Phelps ME. Sustained regional abnormalities in cardiac metabolism after transient ischamia in the chronic dog model. J Am Coll Cardiol 1985;6:336–347.

    CAS  PubMed  Google Scholar 

  19. Knabb RM, Bergmann SR, Fox KAA, Sobel BE. The temporal pattern of recovery of myocardial perfusion and metabolism delineated by positron emission tomography after coronary thrombolysis. J Nucl Med 1987; 28:1563–1570.

    Google Scholar 

  20. Reske SN, Sauer W, Machulla HJ, Winkler C. 15 (p-[123I]-iodophenyl)pentadecanoic acid as tracer of lipid metabolism: comparison with [1–14C]palmitic acid in murine tissues. J Nucl Med 1984;25:1335–1342.

    Google Scholar 

  21. Kohlen SW. Myokardialer Energiestoffwechsel and Umsatz von Jod-123 Phenylpentadekansaure im koronaren Okklusions-Perfusionsmodell des Langendorff-perfundierten Schweineherzens. Thesis, Bonn, 1988.

  22. Miller DD, Gill JB, Livni E, Elmaleh DR, Aretz T, Boucher CA, Strauss HW Fatty acid analogue accumulation: a marker of myocyte viability in ischemic-reperfused myocardium. Circ Res 1988;63:681–692.

    Google Scholar 

  23. Nishimura T, Sago M, Kihara K, Oka H, Shimonagata T, Katabuchi T, Hayashi M, Uehara T, Hayashida K, Noda H, Takano H. Fatty acid myocardial imaging using 1211-β-methyl-iodephenyl pentadecanoic acid (BMIPP): comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model). Eur J Nucl Med 1989;15:341–345.

    Google Scholar 

  24. Knapp FF, Goodman MM, Callahan AP, Kirsch G. Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 1986;27:521–531.

    Google Scholar 

  25. Reske SN, Knapp FF, Winkler C. Experimental basis of metabolic imaging of the myocardium with radioiodinated aromatic free fatty acids. Am J Physiol Imaging 1986;1:214–229.

    Google Scholar 

  26. Henrich MM, Vester E, von der Lohe E, Herzog H, Simon H, Kuikka JT, Feinendegen LE. The comparison of 2-18F-2-deoxyglucose and 15-(ortho-123I-phenyl)-pentadecanoic acid uptake in persisting defects on thallium-201 tomography in myocardial infarction. J Nucl Med 1991;32:1353–1357.

    Google Scholar 

  27. Kuikka JT, Mussalo H, Hietakorpi S, Vanninen E, Länsimies E. Evaluation of myocardial viability with technetium-99m hexakis-2-methoxyisobutyl isonitrile and iodine-123 phenylpentadecanoic acid and single photon emission tomography. Eur J Nucl Med 1992;19:882–889.

    Google Scholar 

  28. Murray G, Schad N, Ladd W, Allie D, Zwagg RV, Avet P, Rockett J. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-lodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy. J Nucl Med 1992;33:1269–1277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reske, S.N. Viability as seen with radiolabelled fatty acids — a new approach to a challenqinq problem. Eur J Nucl Med 21, 279–282 (1994). https://doi.org/10.1007/BF00176565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00176565

Navigation