Skip to main content

Precision of three-dimensional CT-assisted model production in the maxillofacial area

Abstract

Individual skull model fabrication was introduced into preoperative diagnostics in maxillofacial surgery in the mid-1980s. The aim of the present study was to collect information on the reproducibility of a skull model milled from hardened polyurethane foam. This model was based on the CT data of a real skull. Twenty comparative studies were carried out on both the model and the original skull, the model showing an average inaccuracy of 1.6 mm. The deviations ranged between 0.0 and 3.6 mm; the general trend favouring enlargements. The total deviation of the model as compared to the original skull was 1.8%. A convincing aspect of the model, which cannot be obtained by any other method, is its plasticity and the possibility of 3 D orientation on a lifesize model. This new method is already used in preoperative planning of corrections of post-traumatic defects and craniofacial deformities as well as in tumour surgery.

This is a preview of subscription content, access via your institution.

References

  1. Herman GT, Liu HK (1977) Display of three-dimensional information in computed tomography. J Comput Assist Tomogr 1: 155–160

    Google Scholar 

  2. Stimac GK, Sundsteen JW, Prothero JS, Prothero JW, Gerlach R, Sorbonne R (1988) Three-dimensional contour surfacing of the skull, face, and brain from CT and MR images and from anatomic sections. AJR 151: 807–810

    Google Scholar 

  3. Hu ZP, Pun T, Pellegrini C (1990) An expert system for guiding image segmentation. Comput Med Imaging Graph 14: 13–24

    Google Scholar 

  4. Mankovich NJ, Robertson DR, Cheeseman AM (1990a) Three-dimensional image display in medicine. J Digit Imaging 3: 69–80

    Google Scholar 

  5. Mankovich NJ, Cheeseman AM, Stoker NG (1990b) The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging 3: 200–203

    CAS  PubMed  Google Scholar 

  6. Runge VM, Gelblum DY, Wood ML (1990) 3-D Imaging of the CNS. Neuroradiology 32: 356–366

    Google Scholar 

  7. Vannier MW, Gutierrez FR, Laschinger JC (1990) Three-dimensional magnetic resonance imaging. Top Magn Reson Imaging 2: 61–65

    Google Scholar 

  8. Evans AC, Marrett S, Torrescorzo J, Ku S, Collins S (1991) MRI-PET correlation in three dimensions using a volume-of interest (VOI) atlas. J Cereb Blood Flow Metab 11: 169–178

    Google Scholar 

  9. Keyes JW (1990) Three-dimensional display of SPECT images: advantages and problems (editorial). J Nucl Med 31: 1428–1430

    Google Scholar 

  10. Wallis JW, Miller TR (1990) Volume rendering in three-dimensional display of SPECT-images. J Nucl Med 31: 1421–1428

    Google Scholar 

  11. Goris ML (1991) The quantification of planar scintigraphy using three-dimensional modelling of organ shadows. Prog Clin Biol Res 36: 531–539

    Google Scholar 

  12. Smith PA, Dawson KJ (1991) Three dimensional thallium-technetium scans (letter). J R Soc Med 84: 58–59

    Google Scholar 

  13. Sohn C, Grotepass J (1990) Die dreidimensionale Organdarstellung mittels Ultraschall. Ultraschall Med 11: 295–301

    Google Scholar 

  14. Erickson BJ (1989) A desktop computer-based workstation for display and analysis of 3- and 4-dimensional biomedical images. Comput Methods Programs Biomed 30: 97–110

    Google Scholar 

  15. Lancet-editorial (1989) Three-dimensional computed tomography. Lancet II: 1080

  16. Stracher MA, Goitein M, Rowell D (1989) Evaluation of volumetric differences through 3-dimensional display of distance of closest approach. Int J Radiat Oncol Biol Phys 17: 1095–1098

    Google Scholar 

  17. Dhawan AP (1990) A review on biomedical image processing and future trends. Comput Methods Programs Biomed 31: 141–183

    Google Scholar 

  18. Hoffmeister JW, Rienehart GC, Vannier MW (1990) Three-dimensional surface reconstructions using a general purpose image processing system. Comput Med Imaging Graph 14: 35–42

    Google Scholar 

  19. Henri CJ, Pike GB, Collins DL, Peters DM (1991) Three-dimensional display of cortical anatomy and vasculature: magnetic resonance angiography versus multimodality integration. J Digit Imaging 4: 21–27

    Google Scholar 

  20. Wradzilo W, Brambs HJ, Lederer W, Schneider S, Geiger B, Fischer C (1991) An alternative method of three-dimensional reconstruction from two-dimensional CT and MRI data sets. Eur J Radiol 12: 11–16

    Google Scholar 

  21. Meltzer CC, Leal JP, Mayberg HS, Wagner HN, Frost JJ (1990) Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 14: 561–570

    Google Scholar 

  22. Schlusselberg DS, Smith WK, Woodward DJ, Parkey RW (1988) Use of computed tomography for a three-dimensional treatment planning system. Comput Med Imaging Graph 12: 25–32

    Google Scholar 

  23. Robb RA, Hanson DP, Karwoski RA, Larson AG, Workman EL, Stacy MC (1989) Analyze: a comprehensive, operator-intractive software package for multidimensional medical image display and analysis. Comput Med Imaging Graph 13: 433–454

    Google Scholar 

  24. Bradrick JP, Smith AS, Ohman JC, Indresano AT (1990) Estimation of maxillary alveolar cleft volume by three-dimensional CT. J Comput Assist Tomogr 14: 994–996

    Google Scholar 

  25. Gargantini I, Atkinson HH, Schrack GF (1990) Three-dimensional modelling by combining arteficial with real data. Comput Med Imag Graph 14: 379–387

    Google Scholar 

  26. Goh JC, Ho NC, Bose K (1990) Principles and applications of computer-aided design and computer-aided manufacturing (CAD/CAM) technology in orthopaedics. Ann Acad Med Singapore 19: 706–713

    Google Scholar 

  27. Morasso P, Ruggiero C (1990) Human face representation by means of polynomial expension of the harmonic descriptors of tomograms. Comput Med Imaging Graph 14: 389–394

    Google Scholar 

  28. Schmitz H-J, Kahl S, Neubert O (1990) Computergestützte Planung zahnärztlicher Implantate im Oberkiefer durch multiplanare 3 D-CT-Darstellung. Vortrag bei der 13. Wissennschaftlichen Tagung der Arbeitsgemeinschaft Implantologie innerhalb der DGZMK und der Schweizerischen Gesellschaft für orale Implantologie, Zürich, April 1990

  29. Schlöndorff G, Mösges R, Meyer-Ebrecht D, Krybus W, Adams L (1989) CAS (computer assisted surgery). HNO 37: 187–190

    Google Scholar 

  30. Klimek L, Mösges R, Bartsch M (1991) Indications for CAS systems as navigation aid in ENT-surgery. Proc CAR 1991. Lemke HU, Rhodes ML, Jaffe CC, Felix R (eds) Springer Verlag. Berlin Heidelberg New York, pp 81–83

    Google Scholar 

  31. Vannier MW, Brunsden BS, Marsh JL (1991) Diagnostic imaging of craniosynostosis. Proc CAR 1991, Lemke HU, Rhodes ML, Jaffe CC, Felix R (eds) Springer Verlag. Berlin Heidelberg New York, pp 93–96

    Google Scholar 

  32. Brix F, Hebbinghaus D, Meyer W (1985) Verfahren und Vorrichtung für den Modellbau im Rahmen der orthopädischen und traumatologischen Operationsplanung. Röntgenpraxis 38: 35–40

    Google Scholar 

  33. Brix F (1987) Praktische und technische Einzelheiten des Knochemodellbaus. In: Endo-Klinik, Hamburg (ed) Primär- und Revisionsalloarthroplastik. Springer Verlag. Berlin Heidelberg New York, pp 283–287

    Google Scholar 

  34. Brix F, Lambrecht JT (1987) Individuelle Schädelmodellherstelung auf der Grundlage computertomographischer Informationen. Fortschr Kiefer Gesichtschir 32: 74–77

    Google Scholar 

  35. Lambrecht JT, Brix F (1990) Individual skull model fabrication for craniofacial surgery. Cleft Palate J 27: 382–385

    Google Scholar 

  36. Lill W, Solar P, Ulm C, Matejka M (1991) Dreidimensionale computertomographisch gestützte Modellherstellung im maxillofacialen Bereich — Überprüfung der Wiedergabepräzision und Anwendungsgebiete. Z Stomatol 88: 77–84

    Google Scholar 

  37. Tessier P, Hemmy D (1986) Three-dimensional imaging in medicine. A critique by surgeons. Scand J Plast Reconstr Surg 20: 3–11

    Google Scholar 

  38. Hemmy DC, Tessier LT (1985) CT of dry skulls with craniofacial deformities: accuracy of three-dimensional reconstruction. Radiology 157: 113–116

    Google Scholar 

  39. Herman GT, Roberts D, Rabe B (1987) The reduction of pseudoforamina (false holes) in computer graphic presentations for craniofacial surgery. Proc NCGA's Computer Graphics '87 Eighth Annual Conference and Exposition, Philadelphia III 1987: 81–85

  40. Hirschfelder H (1989) Dreidimensionale (3 D) Oberflächenrekonstruktion aus computertomographischen Schnittbildern. Orthopäde 18: 18–23

    Google Scholar 

  41. Langer M, Zwicker C, Langer R, Astinet F, Köhler D, Felix R (1989) Dreidimensionale Rekonstruktionen des Schädel-, Achsen-und Extremitätenskelettes. Digitale Bilddiagn 9: 89–96

    Google Scholar 

  42. Strong AB, Lobregt S, Zonneveld FW (1990) Applications of three-dimensional display techniques in medical imaging. J Biomed Eng 12: 233–238

    Google Scholar 

  43. Rusinek H, Karp NS, Cutting KB (1990) A comparison of two approaches to three-dimensional imaging of craniofacial anomalies. J Digit Imaging 3: 81–88

    Google Scholar 

  44. Cutting C, Bookstein FL, Grayson B, Fellingham L, McCarthy JG (1986) Three dimensional computer-assisted design of craniofacial surgical procedures: optimization and interaction with cephalometric and CT-based models. Plast Reconstr Surg 77: 877–885

    Google Scholar 

  45. Marsh JL, Vannier MW, Bresina S, Hemmer KM (1986) Applications of computer graphics in craniofacial surgery. Clin Plast Surg 13: 441–448

    Google Scholar 

  46. Witte G, Pöltje W, Tiede U, Riemer N (1986) Die dreidimensionale Darstellung computertomographischer Untersuchungen carniofacialer Anomalien. Fortschr Röntgenstr 144: 400–405

    Google Scholar 

  47. Marsh JL, Vannier MW (1987) The anatomy of the cranioorbital deformities of craniosynostosis insights from 3-D images of CT scans. Clin Plast Surg 14: 49

    Google Scholar 

  48. Spitzer WJ, Marsh JL, Vannier MW (1987) Rekonstruktion von Körperoberflächen anhand transaxialer Computertomographien. Dtsch Zahnärztl Z 42: 985–988

    Google Scholar 

  49. Marentette LJ, Majsel RH (1988) Three-dimensional CT reconstruction in midfacial surgery. Otolaryngol Head Neck Surg 98: 48–52

    Google Scholar 

  50. Mayer JS, Wainwright DJ, Yeakley JW, Lee KF, Harris JH, Kulkarni M (1988) The role of three-dimensional computed tomography in the management of maxilofacial trauma. J Trauma 28: 1043–1053

    Google Scholar 

  51. Woolson ST, Fellingham LL, Dev P, Vassiliadis A (1985) Three-dimensional imaging of bone from analysis of computed tomography data. Orthopedics 8: 1269–1273

    Google Scholar 

  52. Abbott AH, Netherway DJ, David DJ, Brown T (1990) Craniofacial Osseous Landmark Determination from Stereo Computer Tomography Reconstructions. Ann Acad Med Singapore 19: 595–604

    Google Scholar 

  53. Hildeboldt CF, Vannier MW, Knapp RH (1990) Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol 82: 283–294

    Google Scholar 

  54. Marsh JL, Vannier MW (1990) Individual skull model fabrication for craniofacial surgery. Cleft Palate J 27: 386–387

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: P. Solar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solar, P., Ulm, C., Lill, W. et al. Precision of three-dimensional CT-assisted model production in the maxillofacial area. Eur. Radiol. 2, 473–477 (1992). https://doi.org/10.1007/BF00176356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00176356

Key words

  • Three dimensional
  • Computed tomography
  • Individual skull model