Skip to main content
Log in

Diffusion-driven instability in a predator-prey system with time-varying diffusivities

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider an ecological model by Levin and Segel (1976) for predator-prey planktonic species, which consists of two reaction-diffusion equations, and extend it to plankton populations with time-varying diffusivities. The local stability of uniform equilibria is examined both analytically and numerically. It is found that diffusive instability is less likely to occur in systems with time-varying diffusivity than those with constant diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. John, F.: Ordinary Differential Equations. Notes from the Courant Institute of Mathematical Sciences (1965)

  2. Bennett, A. F., Denman, K. L.: Phytoplankton patchiness: inferences from particle statistics. J. Mar. Res. 43, 307–335 (1985)

    Article  Google Scholar 

  3. Csanady, G. T.: Turbulent Diffusion in the Environment. Boston: D. Reidel 1973

    Google Scholar 

  4. Edelstein-Keshet, L.: Mathematical Models in Biology. New York: Random House 1988

    MATH  Google Scholar 

  5. Evans, G. T.: Biological effects of vertical-horizontal interactions. In: Steele, J. H. (ed.) Spatial Pattern in Plankton Communities, pp. 159–179. New York London: Plenum Press 1978

    Google Scholar 

  6. Kullenberg, G. E. B.: Vertical processes and the vertical-horizontal coupling. In: Steele, J. H. (ed.) Spatial Pattern in Plankton Communities, pp. 43–71. New York London: Plenum Press 1978

    Google Scholar 

  7. Levin, S. A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974)

    Article  Google Scholar 

  8. Levin, S. A., Segel, L. E.: Hypothesis for origin of planktonic patchiness. Nature, 259, 259 (1976)

    Article  Google Scholar 

  9. Levin, S. A.: A more functional response to predator-prey stability. Am. Nat. 111, 381–383 (1977)

    Article  Google Scholar 

  10. Magnus, W., Winkler, S.: Hill's Equation. New York: Dover Publications, Inc. 1979

    MATH  Google Scholar 

  11. McLachlan, N. W.: Theory and Application of Mathieu Functions. New York: Dover Publications, Inc. 1964

    MATH  Google Scholar 

  12. Meinhardt, H.: Models of Biological Pattern Formation. London: Academic Press 1982

    Google Scholar 

  13. Murray, J. D.: Nonlinear Differential Equation Models in Biology. Oxford:Clarendon Press 1977

    MATH  Google Scholar 

  14. Murray, J. D.: Mathematical Biology. (Biomath., vol. 19) Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  15. Okubo, A.: Horizontal dispersion and critical scales for phytoplankton patches. In: Steele, J. H. (ed.) Spatial Pattern in Plankton Communities, pp. 21–42. New York London: Plenum Press 1978

    Google Scholar 

  16. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. (Biomath., vol. 10) Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  17. Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Berlin Heidelberg New York: Springer 1967

    MATH  Google Scholar 

  18. Segel, L. A., Jackson, J. L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  19. Turing, A. M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., B 237, 37–72 (1952)

    Google Scholar 

  20. Wroblewski, J. S., O'Brien, J. J.: A spatial model of phytoplankton patchiness. Mar. Biol. 35, 161–175 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 803 of the Marine Sciences Research Center, State University of New York, Stony Brook

Supported by the Danish Science Research Council (Grant nos. 11-7128, 11-8321), the Danish Research Academy (Grant nos. E-880011, V-890085) and a Travel Grant for Mathematicians (Rejselegat for Matematikere)

Supported by Hudson River Foundation, Grant no. 01488AO37

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timm, U., Okubo, A. Diffusion-driven instability in a predator-prey system with time-varying diffusivities. J. Math. Biol. 30, 307–320 (1992). https://doi.org/10.1007/BF00176153

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00176153

Key words

Navigation