Skip to main content
Log in

Intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1) expression in human epiretinal membranes

  • Laboratory Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Various histogenetically different cell types such as macrophages, retinal pigment epithelial cells, glial cells, and fibroblasts are involved in the formation of epiretinal membranes. In the development of such multicellular tissues, cellular adhesion molecules (CAMS) are necessary for cell migration, proliferation, and localization, and the transfer of information between the cells. We investigated the expression of the intercellular adhesion molecule 1 (ICAM-1) and the leukocyte function-associated antigen 1 (LFA-1) in frozen sections of epiretinal membranes in proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR), macular pucker, and recurrent membranes after intraocular silicone oil tamponade using the indirect immunoperoxidase method. ICAM-1 forms a receptor-ligand pair with LFA-1 and is involved in a number of significant cellular interactions, e.g. in providing dynamic position-specific information to guide lymphocyte and leukocyte localization in the immune response. ICAM-1 is a member of the immunoglobulin gene superfamily of CAMs. LFA-1 is a member of the integrin family of cell membrane receptors. It mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation, and it is a receptor for ICAM-1. The LFA-1 interaction with its ligand ICAM-1 mediates not only cell adhesion but also signal transduction in immunologic and inflammatory cell responses. Basal ICAM-1 expression is normally low on nonhematopoietic cells, but it can be subject to an up-and-down regulation by various cytokines. ICAM-1 expression was found in 8/9 PVR membranes, in 9/10 PDR membranes, in 4/4 macular pucker, and in 7/8 recurrent membranes after intraocular silicone oil tamponade. Coexpression of LFA-1 was detected in all but one of the ICAM-1-positive membranes. The high frequency of ICAM-1 /LFA-1 coexpression in epiretinal membranes indicates an important role in the pathogenesis of epiretinal membrane formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd AW, Wawryk SO, Burns GF, Fecondo JV (1988) Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proc Natl Acad Sci USA 85:3095–3099

    Google Scholar 

  2. Brackenbury R, Thiery J-P, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem 252:6835–6840

    Google Scholar 

  3. Clarkson JG, Green WR, Massof D (1977) A histopathologic review of 168 cases of preretinal membrane. Am J Ophthalmol 84:1–17

    Google Scholar 

  4. Cotran RS, Pober JS, Gimbrone MA Jr, Springer TA, Wiebke EA, Gaspari AA, Rosenberg SA, Lotze MT (1988) Endothelial activation during interleukin 2 immunotherapy — a possible mechanism for the vascular leak syndrome. J Immunol 140:1883–1888

    CAS  PubMed  Google Scholar 

  5. Dougherty GF, Murdoch S, Hogg N (1988) The function of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response. Eur J Immunol 18:35–39

    Google Scholar 

  6. Dunn SM, Hillam AJ, Stomski F, Jin B, Lucas CV, Boyd AW, Krissansen GW, Burns GF (1989) Leukocyte adhesion molecules involved in inflammation. Transplant Proc 21:31–34

    Google Scholar 

  7. Dustin ML, Springer TA (1988) Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 107:321–331

    Google Scholar 

  8. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA (1986) Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 137:245–254

    Google Scholar 

  9. Dustin ML, Springer KH, Tuck DT, Springer TA (1988) Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon-gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J Exp Med 167:1323–1340

    Google Scholar 

  10. Edelman GM (1987) CAMS and Igs: cell adhesion and the evolutionary origins of immunity. Immunol Rev 100:11–45

    Google Scholar 

  11. Green WR, Kenyon KR, Michels RG, Gilbert HD, Cruz Z de la (1979) Ultrastructure of epiretinal membranes causing macular pucker after retinal reattachment surgery. Trans Ophthalmol Soc UK 99:65–77

    CAS  PubMed  Google Scholar 

  12. Heidenkummer H-P, Kampik A (1991) Immunhistochemische Untersuchungen und klinische Ergebnisse bei operatives Entfernung eines macular pucker. (Immunchistochemical investigations and clinical results of surgically removed macular picker). Spektrum Augenheilkd 5:7–12

    Google Scholar 

  13. Heidenkummer H-P, Kampik A (1991) Vergleichende immunhistochemische Untersuchungen epiretinaler Membranen bei proliferativen vitreoretinalen Erkrankungen. (Comparative immunohistochemical investigations of epiretinal membranes in proliferative vitreoretinal disorders). Fortschr Ophthalmol 88:219–224

    Google Scholar 

  14. Hiscott PS, Grierson I, Trombetta CJ, Rahi AHS, Marshall J, McLeod D (1984) Retinal and epiretinal glia: an immunohistochemical study. Br J Ophthalmol 68:698–707

    CAS  PubMed  Google Scholar 

  15. Hiscott PS, Grierson I, McLeod D (1984) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68:708–715

    Google Scholar 

  16. Hiscott P, Waller HA, Butler MG, Grierson I (1991) Fibronectin mRNA in epiretinal cells (abstract). Invest Ophthalmol Vis Sci [Suppl] 32:1047

    Google Scholar 

  17. Hui YN, Goodnight R, Zhang XJ, Sorgente N, Ryan SJ (1988) Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol 106:1280–1285

    Google Scholar 

  18. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  CAS  PubMed  Google Scholar 

  19. Kampik A, Green RD, Michels RG (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90: 797–809

    CAS  PubMed  Google Scholar 

  20. Kampik A, Kenyon KR, Michels RG, Green WR, Cruz ZC de la (1981) Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol 99:1445–1454

    Google Scholar 

  21. Kishimoto TK, Larson RS, Corbi AL, Dustin ML, Staunton DE, Springer TA (1989) The leukocyte integrins. Adv Immunol 46:149–182

    Google Scholar 

  22. Konter U, Kellner I, Kaufmann R, Mielke V, Sterry W (1989) Adhesion molecule mapping in human skin. Arch Dermatol Res 281:454–462

    Google Scholar 

  23. Laqua H (1978) Pigmented macular pucker. Am J Ophthalmol 86:56–58

    Google Scholar 

  24. Little BC, Limb GA, Meager A, Ogilvie JAE, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC (1991) Cytokines in proliferative vitreoretinopathy [Suppl]. Invest Ophthalmol Vis Sci (abstract) 32:768

    Google Scholar 

  25. Machemer R, Van Horn DL, Aaberg TM (1978) Pigment epithelial proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 85:181–191

    Google Scholar 

  26. Martin S, Maruta K, Burkart V, Gillis S, Kolb H (1988) IL-1 and IFN-gamma increase vascular permeability. Immunology 64:301–305

    Google Scholar 

  27. Miller B, Miller H, Patterson R, Ryan SJ (1986) Retinal wound healing. Cellular activity at the vitreoretinal interface. Arch Ophthalmol 104:281–285

    Google Scholar 

  28. Oppenheimer-Marks N, Ziff M (1988) Migration of lymphocytes through endothelial cell monolayers: augmentation by interferon-gamma. Cell Immunol 114:307–323

    Google Scholar 

  29. Pober JS (1988) Cytokine-mediated activation of vascular endothelium —physiology and pathology. Warner-Lambert/Parke-Davis award lecture. Am J Pathol 133:426–433

    Google Scholar 

  30. Rothlein R, Springer TA (1986) The requirement for LFA-1 in homotypic leukocyte adhesion stimulated by phorbol ester J Exp Med 163:1132–1149

    Google Scholar 

  31. Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137:1270–1274

    Google Scholar 

  32. Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518

    Google Scholar 

  33. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Google Scholar 

  34. Scheiffarth OF, Tang S, Kampik A (1990) Makrophagen und HLA-DR-Expression bei proliferativer Vitreoretinopathie. Fortschr Ophthalmol 87:340–343

    Google Scholar 

  35. Simmons D, Makgoba MW, Seed B (1988) ICAM, an adhesion ligand of LFA-1 is homologous to the neural cell adhesion molecule NCAM. Nature 331:624–627

    Google Scholar 

  36. Springer TA, Dustin ML, Kishimoto TK, Marlin SD (1987) The lymphocyte function-associated LFA-1, CD2, and LFA-2 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 5:223–252

    Google Scholar 

  37. Te Velde AA, Keizer GD, Figdor CG (1987) Differential function of LFA-1 molecules (CD11 and CD18) in adhesion of human monocytes to melanoma and endothelial cells. Immunology 61:261–267

    Google Scholar 

  38. Thiery J-P, Brackenbury R, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem 252:6841–6845

    Google Scholar 

  39. Thiery J-P, Delouvee A, Gallin WJ, Cunningham BA, Edelman GM (1984) Ontogenic expression of cell adhesion molecules. L-CAM is found in epithelia derived from three primary germ layers. Dev Biol 102:61–78

    Google Scholar 

  40. Trese MT, Chandler DB, Machemer R (1983) Macular pucker. II. Ultrastructure. Graefe's Arch Clin Exp Ophthalmol 221:16–26

    Google Scholar 

  41. Van Horn DL, Aaberg TM, Machemer R, Fenzl R (1977) Glial cell proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 84:383–393

    PubMed  Google Scholar 

  42. Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S (1990) The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 144:4579–4586

    Google Scholar 

  43. Weller M, Wiedemann P, Heimann K, Zilles K (1988) The significance of fibronectin in vitreoretinal pathology. A critical evaluation. Graefe's Arch Clin Exp Ophthalmol 226:294–298

    Google Scholar 

  44. Wheeler ME, Luscinskas FW, Bevilacqua MP, Gimbrone MA Jr (1988) Cultured human endothelial cells stimulated with cytokines or endotoxin produce an inhibitor of leukocyte adhesion. J Clin Invest 82:1211–1218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Herman-Wacker-Fonds, Foundation for Research in Retinal Detachment, Federal Republic of Germany

Correspondence to: H.-P. Heidenkummer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidenkummer, HP., Kampik, A. Intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1) expression in human epiretinal membranes. Graefe's Arch Clin Exp Ophthalmol 230, 483–487 (1992). https://doi.org/10.1007/BF00175938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175938

Keywords

Navigation