Skip to main content

Relationship among coelacanths, lungfishes, and tetrapods: A phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences

Abstract

To clarify the relationship among coelacanths, lungfishes, and tetrapods, the amino acid sequences deduced from the nucleotide sequences of mitochondrial cytochrome oxidase subunit I (COI) genes were compared. The phylogenetic tree of these animals, including the coelacanth Latimeria chalumnae and the lungfish Lepidosiren paradoxa, was inferred by several methods. These analyses consistently indicate a coelacanth/lungfish clade, to which little attention has been paid by previous authors with the exception of some morphologists. Overall evidence of other mitochondrial genes reported previously and the results of this study equally support the coelacanth/lungfish and lungfish/tetrapod clades, ruling out the coelacanth/tetrapod clade.

This is a preview of subscription content, access via your institution.

References

  • Adachi J, Hasegawa M (1992) Computer science monographs no. 27, MOLPHY: Programs for molecular phylogenetics I — PROTML: Maximum likelihood inference of protein phylogeny. Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Adachi J, Cao Y, Hasegawa M (1993) Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates. J Mol Evol 36:270–281

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) The complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Bibb MJ, van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Google Scholar 

  • Cantatore P, Roberti M, Rainaldi G, Gadaleta MN, Saccone C (1989) The complete nucleotide sequence, gene organization and genetic code of mitochondrial genome of Paracentroutus lividus. J Biol Chem 264:10695–10975

    Google Scholar 

  • Chang M-M (1991) “Rhipidistians”, dipnoans, and tetrapods. In: Schultze H-P, Trueb L (eds) Origins of the higher groups of tetrapods. Controversy and consensus. Cornell University Press, Ithaca, NY, pp 3–28

    Google Scholar 

  • Chang YS, Huang FL (1991) EMBL accession number X61010

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J Mol Biol 212:599–634

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1989) PHYLIP, Version 3.2. University of Washington, Seattle

    Google Scholar 

  • Forey PL (1987) Relationships of lungfishes. J Morphol [suppl] 1:75–91

    Google Scholar 

  • Forey PL (1988) Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336:727–732

    Google Scholar 

  • Forey PL (1991) Blood lines of the coelacanth. Nature 351:347–348

    Google Scholar 

  • Fritsch B (1987) Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154

    Google Scholar 

  • Gadaleta G, Pepe G, Decandia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516

    Google Scholar 

  • Gorr T, Kleinschmidt T, Fricke H (1991) Close tetrapod relationships of the coelacanth Latimeria indicated by haemoglobin sequences. Nature 351:394–397

    Google Scholar 

  • Hasegawa M, Cao Y, Adachi J, Yano T (1992a) Rodent polyphyly? Nature 355:595

    Google Scholar 

  • Hasegawa M, Fujiwara M (1993) Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 2:1–5

    Google Scholar 

  • Hasegawa M, Hashimoto T (1993) Ribosomal RNA trees misleading? Nature 361:23

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J (1992b) Origin and evolution of eukaryotes as inferred from protein sequence data. In: Hartman H, Matsumoto K (eds) The origin and evolution of the cell. World Scientific, Singapore, pp 107–130

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993) Early branchings in the evolution of eukaryotes: ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Biol 36:380–388

    Google Scholar 

  • Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol (in press)

  • Hasegawa M, Kishino H, Saitou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32:443–445

    Google Scholar 

  • Hedges SB, Hass CA, Maxon LR (1993) Relations of fish and tetrapods. Nature 363:501–502

    Google Scholar 

  • Hennig W (1983) Stammesgeschichte der Chordaten. P Parey, Hamburg

    Google Scholar 

  • Hillis DM, Dixon MT, Ammerman LK (1991) The relationships of the coelacanth Latimeria chalumnae: evidence from sequences of vertebrate 28S ribosomal RNA genes. Environ Biol Fishes 32:119–130

    Google Scholar 

  • Irwin DM, Kocher KD, Wilson AC (1990) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Google Scholar 

  • Jacobs HT, Elliot DJ, Math VB, Farquharson A (1988a) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217

    Google Scholar 

  • Jacobs HT, Balfe P, Cohen BL, Farquharson A, Comito L (1988b) Phylogenetic implications of genome rearrangement and sequence evolution in echinoderm mitochondrial DNA. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 121–137

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    CAS  PubMed  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood of protein phylogeny and the origin of chloroplasts. J Mol Evol 31: 151–160

    CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196–6200

    CAS  PubMed  Google Scholar 

  • Kumazawa Y, Nishida M (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 37:380–398

    CAS  PubMed  Google Scholar 

  • Maeda N, Zhu D, Fitch WM (1984) Amino acid sequence of lower vertebrate parvalbumins and their evolution. Mol Biol Evol 1:473–488

    Google Scholar 

  • Marshall C, Schultze H-P (1992) Relative importance of molecular, neontological, and paleontological data in understanding the biology of the vertebrate invasion of land. J Mol Evol 35:93–101

    Google Scholar 

  • Meyer A, Wilson AC (1990) Origins of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 31:359–364

    Google Scholar 

  • Meyer A, Wilson AC (1991) Coelacanth's relationships. Nature 353: 219

    Google Scholar 

  • Meyer A, Dolven SI (1992) Molecules, fossils, and the origin of tetrapods. J Mol Evol 35:102–113

    Google Scholar 

  • Miles R (1975) The relationships of the Dipnoi. Collq Int CNRS 218:133–148

    Google Scholar 

  • Miles R (1977) Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. Zool J Linn Soc 61:1–328

    Google Scholar 

  • Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 437–450

    Google Scholar 

  • Normark BB, McCane AR, Harrison RG (1991) Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol Biol Evol 8:819–834

    Google Scholar 

  • Northcutt RG (1987) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol [Suppl]1:277–297

    Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. J Microbiol Rev 56:229–264

    Google Scholar 

  • Roe BA, MA DP, Wilson RK, Wong JF-H (1985) The complete sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology, 3rd ed. University of Chicago Press, Chicago

    Google Scholar 

  • Rosen DE, Forey PL, Gardiner BG, Patterson C (1981) Lungfishes, tetrapods, paleontology and plesiomorphy, Bull Am Mus Nat Hist 167:159–276

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Schorf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Saiki RK (1989) The design and optimization of the PCR. In: Erlich HA (ed) PCR technology, Stockton Press, NY, pp 7–16

    Google Scholar 

  • Saito N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schultze H-P (1987) Dipnoans as Sarcopterygians. J Morphol [Suppl]3:39–74

    Google Scholar 

  • Schultze H-P, Campbell KSW (1987) Characterization of the Dipnoi, a monophyletic group. J Morphol [Suppl]1:25–37

    Google Scholar 

  • Sharp PM, Lloyd AT, Higgins DG (1991) Coelacanth's relationship. Nature 353:218–219

    Google Scholar 

  • Stock DW, Moberg KD, Maxson LR, Whitt GS (1991) A phylogenetic analysis of the 18S ribosomal RNA sequence of the coelacanth Latimeria chalumnae. Environ Biol Fishes 32:99–117

    Google Scholar 

  • Stock DW, Swofford DL (1991) Coelacanth's relationships. Nature 353:217–218

    Google Scholar 

  • Tzeng C-S, Hui C-F, Shen S-C, Huang PC (1992) The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20:4853–4858

    Google Scholar 

  • Yokobori S, Ueda T, Watanabe K (1993) Codons AGA and AGG are read as glycine in ascidian mitochondria. J Mol Evol 36:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: K. Watanabe 0592

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yokobori, Si., Hasegawa, M., Ueda, T. et al. Relationship among coelacanths, lungfishes, and tetrapods: A phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences. J Mol Evol 38, 602–609 (1994). https://doi.org/10.1007/BF00175880

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175880

Key words

  • Origin of tetrapods
  • Coelacanth Latimeria chalumnae
  • Lungfish Lepidosiren paradoxa
  • Cytochrome oxidase subunit I (COI)
  • Maximum likelihood inference of protein phylogeny