Skip to main content
Log in

The effect of sublethal lead exposure on the ultrastructure and on the distribution of acid phosphatase activity in chloragocytes of earthworms (Annelida, Oligochaeta)

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Laboratory experiments were conducted to study the effects of the exposure to a sublethal concentration (500 p.p.m.) of lead on the ultrastructure and acid phosphatase compartmentalization of the chloragogenous tissue of earthworms, Eisenia foetida. For the cytochemical demonstration of acid phosphatase activity, lead and cerium were used as capturing agents. In both cases there was a change in the compartmentalization of acid phosphatase, the enzyme activity being localized within the chloragosomes in controls, but distributed throughout the cytosol in treated animals. In addition, acid phosphatase activity increased following lead exposure. At the ultrastructural level, disruption of the chloragosomal membranes, an increase in chloragosomal fusion processes and vesiculation of the cytoplasm were evident. Moreover, an enhanced release of chloragosomes to the extracellular space was found in lead-exposed worms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behra, R., (1993) In vitro effects of cadmium, zinc and lead on calmodulin-dependent actions in Oncorhynchus mykiss, Mytilus sp. and Chlamydomonas reinhardtii. Arch. Environ. Contam. Toxicol. 24, 21–7.

    Google Scholar 

  • Bowen, I. D., Worrill, N. A., Winters, C. A. & Mullarkey, K. (1988) The use of backscattered electron imaging, X-ray microanalysis and X-ray microscopy in demonstrating physiological cell death. Scan. Microsc. 2, 1453–62.

    Google Scholar 

  • Brun, A. & Brunk, U. (1973) Lead induced injury on in vitro cultured rat fibroblasts. A histochemical study. Histochemie 35, 227–34.

    PubMed  Google Scholar 

  • Cajaraville, M. P., Marigómez, J. A. & Angulo, E. (1990) Ultrastructural study of the short-term toxic effects of naphthalene on the kidney of the marine prosobranch Littorina littorea. J. Invertbr. Pathol. 55, 215–24.

    Google Scholar 

  • Cajaraville, M. P., Abascal, I., Etxeberria, M. & Marigómez, I. (1995) Lysosomes as cellular markers of environmental pollution: time-and dose-dependent responses of the digestive lysosomal system of mussels after petroleum hydrocarbon exposure. Env. Toxicol. Water Qual. 10, 1–8.

    Google Scholar 

  • Cancio, I., ApGwynn, I., Ireland, M. P. & Cajaraville, M. P. (1995) Lysosomal origin of the chloragosomes in the chloragogenous tissue of the earthworm Eisenia foetida: cytochemical demonstration of acid phosphatase activity. Histochem. J. 27, 591–6.

    PubMed  Google Scholar 

  • Dallinger, R. & Prosi, F. (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. II. Subcellular fractionation of metal-accumulating lysosomes from hepatopancreas. Cell Biol. Toxicol. 4, 97–109.

    PubMed  Google Scholar 

  • DeDuve, C. (1969) The lysosome in retrospect. In Lysosomes in Biology and Pathology (edited by Dingle, J. T. & Fell, H. B.) Vol 1, pp. 3–40. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Fischer, E. (1972) Uber die pigmente der chloragosomen und ihre histochemischen eigenschaften bei Lumbricus terrestris L. Acta Histochem. 42, 10–14.

    PubMed  Google Scholar 

  • Fischer, E. (1973a) The chloragosomes of lumbricidae as cation-exchangers (in vitro investigations). Acta Acad. Sci. Hung. 24, 157–63.

    Google Scholar 

  • Fischer, E. (1973b) Histochemische Untersuchungen uber die metabolische aktivitat der chloragosomen von Lumbricus terrestris L. Acta Histochem. 46, 1–9.

    PubMed  Google Scholar 

  • Fischer, E. (1975) Structural basis of cation exchange, complex formation and redox properties in chloragosomes. Acta. Biol. Acad. Sci. Hung. 26, 75–84.

    PubMed  Google Scholar 

  • Fischer, E. (1976) Chloragocyte-eleocyte transformation induced by benomyl and carbofuran toxication of earthworms (Oligochaeta). Zool. Anz. 197, 225–33.

    Google Scholar 

  • Fischer, E. (1989) Effects of atrazine and paraquat-containing herbicides on Eisenia foetida (Annelida, Oligochaeta). Zool. Anz. 223, S 291–300.

    Google Scholar 

  • Fischer, E. & Horvath, I. (1976a) The effect of carbofuran toxication on the chloragogen tissue of Tubifex tubifex Mull. (Oligochaeta). Z. Mikrosk. Anat. Forsch. 4, 720–36.

    Google Scholar 

  • Fischer, E. & Horvath, I. (1976b) In vivo accumulation and discharge of azine, thiazine and xanthene dyes and their effects on the chloragogen cells of Lumbricidae (Oligochaeta). Acta Biol. Sci. Hung. 28, 33–47.

    Google Scholar 

  • Fischer, E. & Molnár, L. (1992) Environmental aspects of the chloragogenous tissue of earthworms. Soil. Biol. Biochem. 24, 1723–7.

    Google Scholar 

  • George, S. G. (1983) Heavy metal detoxication in the mussel Mytilus edulis — composition of cadmium containing kidney granules (tertiary lysosomes). Comp. Biochem. Physiol. 76C, 53–7.

    Google Scholar 

  • George, S. G., Pirie, B. J. S., Cheyne, A. R., Coombs, T. L. & Grant, T. P. (1978) Detoxification of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster Ostrea edulis. Mar. Biol. 45, 147–56.

    Google Scholar 

  • Gomori, G. (1952) Microscopic Histochemistry: Principles and Practice. Chicago: The University of Chicago Press.

    Google Scholar 

  • Halliwell, B. & Gutteridge, J. M. (1984) Oxygen-toxicity, oxygen radicals, transition-metals and disease. Biochem. J. 219, 1–14.

    PubMed  Google Scholar 

  • Ireland, M. P. (1975) Distribution of Pb, Zn, and Ca in Dendrobaena rubida (Oligochaeta) living in soil contaminated by a base metal mining in Wales. Comp. Biochem. Physiol. 52B, 552–5.

    Google Scholar 

  • Ireland, M. P. (1978) Heavy-metal binding-properties of earthworm chloragosomes. Acta. Biol. Sci. Hung. 29, 385–94.

    Google Scholar 

  • Ireland, M. P. (1983) Heavy metal uptake and tissue distribution in earthworms. In Earthworm Ecology (edited by Satchell, J. E.), pp. 247–65. London: Chapman & Hall.

    Google Scholar 

  • Ireland, M. P. & Richards, K. S. (1977) The occurrence and localisation of heavy metals and glycogen in the earthworms Lumbricus rubellus and Dendrobaena rubida from a heavy metal site. Histochemistry 51, 153–66.

    PubMed  Google Scholar 

  • Jamieson, B. G. M. (1992) Oligochaeta. In Microscopic Anatomy of Invertebrates, 7, Annelida (edited by Harrison, F. W. & Gardiner, S. L.), pp. 217–322. New York: Wiley-Liss.

    Google Scholar 

  • Lowe, D. M., Moore, M. N. & Clarke, K. R. (1981) Effects of oil on digestive cells in mussels: quantitative alteration in cellular and lysosomal structure. Aquat. Toxicol. 1, 213–26.

    Google Scholar 

  • Mahaffey, K. R. (1987) Factors influencing biological responses to chemicals. In Mechanisms of Cell Injury: Implications for Human Health (edited by FowlerB. A.), pp. 315–31. Chichester: John Wiley & Sons.

    Google Scholar 

  • Marigómez, J. A., Vega, M. M., Cajaraville, M. P. & Angulo, E. (1989) Quantitative responses of the digestive-lysosomal system of winkles to sublethal concentrations of cadmium. Cell Mol. Biol. 35, 555–62.

    PubMed  Google Scholar 

  • Marigómez, J. A., Cajaraville, M. P. & Angulo, E. (1990a) Cellular cadmium distribution in the common winkle Littorina littorea (L.) determined by X-ray microprobe analysis and histochemistry. Histochemistry 94, 191–9.

    PubMed  Google Scholar 

  • Marigómez, J. A., Cajaraville, M. P., Angulo, E. & Moya, J. (1990b) Ultrastructural alterations in the renal epithelium of cadmium-treated Littorina littorea (L.). Arch. Environ. Contam. Toxicol. 19, 863–71.

    Google Scholar 

  • Marzabadi, M. R. & Jones, C. B. (1992) Heavy metals and lipofuscinogenesis. A study on myocardial cells cultured under varying oxidative stress. Mech. Ageing Dev. 66, 159–71.

    PubMed  Google Scholar 

  • Moment, G. B. (1974) The possible roles of coelomic cells and their yellow pigment in annelid regeneration and aging. Growth 38, 209–18.

    PubMed  Google Scholar 

  • Morgan, A. J. (1982) The elemental composition of the chloragosomes of nine species of British earthworms in relation to calciferous gland activity. Comp. Biochem. Physiol. 73A, 207–16.

    Google Scholar 

  • Morgan, A. J. & Morris, B. (1982) The ultrastructure and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Histochemistry 75, 269–85.

    PubMed  Google Scholar 

  • Morgan, A. J., Morgan, J. E., Turner, M., Winter, C. & Yarwood, A. (1993) Metal relationships of earthworms. In Ecotoxicology of Metals in Invertebrates (edited by Dallinger, R. & Rainbow, P. S.), pp. 333–58. Boca Raton, Florida: Lewis Publishers.

    Google Scholar 

  • Morgan, J. E. & Morgan, A. J. (1988a) Calcium-lead interactions involving earthworms. Part I: the effect of exogenous calcium and lead accumulation by earthworms under field and laboratory conditions. Environ. Pollut. 54, 41–55.

    PubMed  Google Scholar 

  • Morgan, J. E. & Morgan, A. J. (1988b) Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environ. Pollut. 54, 123–38.

    PubMed  Google Scholar 

  • Morgan, J. E. & Morgan, A. J. (1989) The effect of lead incorporation on the elemental composition of earthworm (Annelida, Oligochaeta) chloragosome granules. Histochemistry 92, 237–41.

    PubMed  Google Scholar 

  • Pickwell, G. V. & Steinert, S. A. (1984) Serum biochemical and cellular responses to experimental cupric ion challenge in mussels. Mar. Environ. Res. 14, 245–65.

    Google Scholar 

  • Pipe, R. K. & Moore, M. N. (1986) Arylsulphatase activity associated with phenanthrene induced digestive cell deletion in the marine mussel Mytilus edulis. Histochem. J. 18, 557–64.

    PubMed  Google Scholar 

  • Prentø, P. (1979) Metals and phosphate in the chloragosomes of Lumbricus terrestris and their possible physiological significance. Cell Tiss. Res. 196, 123–34.

    Google Scholar 

  • Regoli, F. (1992) Lysosomal responses as a sensitive stress index in biomonitoring heavy metal pollution. Mar. Ecol. Prog. Ser. 84, 63–9.

    Google Scholar 

  • Ribarov, S. R. & Benov, L. C. (1981) Relationship between the hemolytic action of heavy metals and lipid peroxidation. Biochim. Biophys. Acta 640, 721–6.

    PubMed  Google Scholar 

  • Richards, K. S. & Ireland, M. P. (1978) Glycogen-lead relationship in the earthworm Dendrobaena rubida from a heavy metal site. Histochemistry, 56, 55–64.

    PubMed  Google Scholar 

  • Robinson, J. M. & Karnovsky, M. J. (1983) Ultrastructural localization of several phosphatases with cerium. J. Histochem. Cytochem. 31, 1197–208.

    PubMed  Google Scholar 

  • Roots, B. I. & Johnston, P. V. (1966) The lipids and pigments of the chloragosomes of the earthworm Lumbricus terrestris L. Comp. Biochem. Physiol. 17, 285–8.

    PubMed  Google Scholar 

  • Somashekaraiah, B. V., Padmaja, K. & Prasad, A. R. (1992) Lead-induced lipid peroxidation and auto-oxidant defense components of developing chick embryos. Free Rad. Biol. Med. 13, 107–14.

    PubMed  Google Scholar 

  • Sternlieb, I. & Goldfischer, S. (1976) Heavy metals in lysosomes. In Lysosomes in Biology and Pathology, 5 (edited by Dingle, J. T. & Dean, R. T.), pp. 185–200. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Sunderman, F. W.Jr (1986) Metals and lipid peroxidation. Acta Pharmacol. Toxicol. 59 S7, 248–55.

    Google Scholar 

  • Varute, A. T. & More, N. K. (1972) Are chloragosomes in earthworm chloragogen cells lysosomes? Acta Histochem. 44, 144–51.

    PubMed  Google Scholar 

  • Varute, A. T. & More, N. K. (1973) Lysosomal acid hydrolases in the chloragogen cells of earthworms. Comp. Biochem. Physiol. 45A, 607–35.

    Google Scholar 

  • Viarengo, A. (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. CRC Crit. Rev. in Aquat. Sci. 1, 295–317.

    Google Scholar 

  • Viarengo, A. (1994) Heavy metal cytotoxicity in marine organisms: effects on Ca2+ homeostasis and possible alteration of signal transduction pathways. In Advances in Comparative and Environmental Physiology. Vol. 20, pp. 85–110. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Viarengo, A., Canesi, L., Fertica, M., Poli, G., Moore, M. N. & Orunesu, M. (1990) Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis Lam. Comp. Biochem. Physiol. 97C, 37–42.

    Google Scholar 

  • Weeden, R. P. & DeBroe, M. E. (1987) The role of chemical exposure in irreversible renal injury in humans. In Mechanisms of Cell Injury: Implications for Human Health (edited by Fowler, B. A.), pp. 333–51. Chichester: John Wiley & Sons.

    Google Scholar 

  • Whitehouse, R. H. & Grove, A. J. (1943) Dissection of the Earthworm. London: University Tutorial Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancio, I., ap Gwynn, I., Ireland, M.P. et al. The effect of sublethal lead exposure on the ultrastructure and on the distribution of acid phosphatase activity in chloragocytes of earthworms (Annelida, Oligochaeta). Histochem J 27, 965–973 (1995). https://doi.org/10.1007/BF00175571

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175571

Keywords

Navigation