Skip to main content
Log in

Endotherms, ectotherms, and mitochondrial genome-size variation

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The patterns of mitochondrial genomesize variation were investigated in endothermic and ectothermic species to examine the role that thermal habit might play in the evolution of animal mitochondrial DNA (mtDNA). Data on mtDNA size (the modal, largest, and smallest mtDNA reported within a species), the percent variation in mtDNA size (the difference in size between the largest and smallest mtDNAs divided by the model genome size for a given species), and the frequency of heteroplasmic individuals (those carrying more than one mtDNA length variant) were tabulated from the literature. Endotherms showed significantly less variation in mtDNA size and tended to have smaller mtDNAs than ectotherms. Further comparisons between endothermic and ectothermic vertebrates revealed that the largest genome and the percent variation in genome size were significantly smaller in the former than the latter. There was no difference between endothermic and ectotherms in the frequency of heteroplasmy. These data are discussed in light of two hypotheses: (1) more intense directional and purifying selection for small genome size in the cytoplasms of species with higher metabolic rates and (2) reduced mutation pressures generating mtDNA size variants in endotherms relative to those in ectotherms. The general trends are consistent with the selection hypothesis but in certain species mtDNA size variation appears to be governed by mutational pressures. To test these competing hypotheses further, comparative studies are proposed where mitochondrial genome size is quantified in sister taxa and tissue types with very different metabolic rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman PL, Dittmer DS (1968) Metabolism. Biological handbooks, Fed Am Soc Exp Biol, Bethesda, MD, pp 349–377

    Google Scholar 

  • Annex BH, Williams RS (1990) Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol Cell Biol 10: 5671–5678

    Google Scholar 

  • Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in Atlantic cod (Gadus morhua). Genetics 132: 211–220

    Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93: 93–145

    Google Scholar 

  • Avise JC, Zink RM (1988) Molecular genetic divergence between avian sibling species: king and clapper rails, long-billed and short-billed dowitchers, boat-tailed and great-tailed grackles, and tufted and black-crested titmice. The Auk 105: 516–528

    Google Scholar 

  • Bentzen P, Legget WC, Brown GC (1988) Length and restriction site heteroplasmy in the mitochondrial DNA of American Shad (Alosa sapidissima). Genetics 118: 509–518

    Google Scholar 

  • Berminghan E, Lamb T, Avise JC (1986) Size polymorphism and heteroplasmy in the mitochondrial DNA of lower vertebrates. J Hered 77: 249–252

    Google Scholar 

  • Bernardi G, Bernardi G (1990a) Compositional patterns in the nuclear genome of cold-blooded vertebrates. J Mol Evol 31: 265–281

    Google Scholar 

  • Bernardi G, Bernardi G (1990b) Compositional transitions in the nuclear genome of cold-blooded vertebrates. J Mol Evol 31: 282–293

    Google Scholar 

  • Bernardi G, Bernardi G (1991) Compositional properties of nuclear genome from cold-blooded vertebrates. J Mol Evol 31: 282–293

    Google Scholar 

  • Biju-Duval C, Ennafa, Dennebouy N, Monnerot M, Mignotte F, Soriguer RC, El Gaaïed A, El Hili A, Mounolou J-C (1991) Mitochondrial DNA evolution in Lagomorphs: origin of systematic heteroplasmy and organization of diversity in European rabbits. J Mol Evol 33: 92–102

    Google Scholar 

  • Bogenhagen D, Clayton DA (1977) Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 11: 719–727

    Google Scholar 

  • Boursot P, Yonekawa H, Bonhomme F (1987) Heteroplasmy in mice with a deletion of a large coding region of mitochondrial DNA. Mol Biol Evol 4: 46–55

    Google Scholar 

  • Boyce TM, Zwick ME, Aquadro CF (1989) Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics 123: 825–836

    Google Scholar 

  • Brown GG, DesRosiers LJ (1983) Rat mitochondrial DNA polymorphism: Sequence analysis of a hypervariable site for insertions and deletions. Nucleic Acids Res 11: 6699–6708

    Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 95–130

    Google Scholar 

  • Buroker NE, Brown JR, Gilbert TE, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124: 157–163

    Google Scholar 

  • Cann RL, AC Wilson (1983) Length mutations in human mitochondrial DNA. Genetics 104: 699–711

    Google Scholar 

  • Cathcart R, Schwiers E, Saul RL, Ames BN (1984) Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative damage. Proc Natl Acad Sci USA 81: 5633–5637

    Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28: 693–705

    Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) The evolutionary relationships among known life forms. J Mol Evol 28: 98–112

    Google Scholar 

  • Cornuet J-M, Garnery L, Solignac M (1991) Putative origin and function of the intergenic region between COI and COII of Apis mellifera L mitochondrial DNA. Genetics 128: 393–403

    Google Scholar 

  • de Pamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339

    Google Scholar 

  • Densmore LD, Wright JW, Brown WM (1985) Length variation and heteroplasmy in mitochondrial DNA from parthenogenetic and bisexual lizards (genus Cnemidophorus). Genetics 110: 689–707

    Google Scholar 

  • Edwards SV, Wilson AC (1990) Phylogenetically informative length polymorphism and sequence variability in mitochondrial DNA of Australian songbirds (Pomatostomus). Genetics 126: 503–519

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125: 1–15

    Article  Google Scholar 

  • Ferris SD, Sage RD, Prager EM, Ritte U, Wilson AC (1983) Mitochondrial DNA evolution in mice. Genetics 105: 681–721

    Google Scholar 

  • Gach MH, Reimchen TE (1989) Mitochondrial DNA patterns among endemic stickleback from the Queen Charlotte Islands: a preliminary survey. Can J Zool 67: 1324–1328

    Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5: 249–299

    Google Scholar 

  • Gjetvaj B, Cook DI, Zouros E (1992) Repeated sequences and large-scale size variation of mitochondrial DNA: A common feature among scallops (Bivalvia: Pectinidae). Mol Biol Evol 9: 106–124

    Google Scholar 

  • Hale LR, Singh RS (1986) Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations of Drosophila melanogaster. Proc Natl Acad Sci USA 78: 8813–8817

    Google Scholar 

  • Hale LR, Singh RS (1991) A comprehensive study of genetic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs selection in the genetic structure of geographic populations. Genetics 129: 103–117

    Google Scholar 

  • Harrison RG, Rand DM, Wheeler WC (1985) Mitochondrial DNA size variation within individual crickets. Science 228: 1446–1448

    Google Scholar 

  • Hauswirth WW, Laipis MJ (1983) Mitochondrial DNA polymor phism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79: 4686–4690

    Google Scholar 

  • Hauswirth WW, Van De Walle MJ, Laipis PJ, Olivo PD (1984) Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell 37: 1001–1007

    Google Scholar 

  • Hayasaka K, Horai S, Shotake T, Nozawa K, Matsunaga E (1986) Mitochondrial DNA polymorphism in Japanese monkeys, Macaca fuscata. Jpn J Genet 61: 345–359

    Google Scholar 

  • Hayasaka K, Ishida T, Horai S (1991) Heteroplasmy and polymorphism in the major noncoding region of mitochondrial DNA in Japanese monkeys: association with tandemly repeated sequences. Mol Biol Evol 8: 399–415

    Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719

    Google Scholar 

  • Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46: 828–842

    CAS  PubMed  Google Scholar 

  • Horai S, Matsunaga E (1986) Mitochondrial DNA polymorphism in Japanese. II. Analysis with restriction enzymes of four and five base pair recognition. Hum Genet 72: 105–117

    Google Scholar 

  • Hyman BC, Slater TM (1990) Recent appearance and molecular characterization of mitochondrial DNA deletions within a defined nematode pedigree. Genetics 124: 845–853

    Google Scholar 

  • Hyman BC, Beck JL, Weiss KC (1988) Sequence amplification and gene rearrangement in a parasitic nematode mitochondrial DNA. Genetics 120: 707–712

    Google Scholar 

  • Koehler CM, Lindberg GL, Brown DR, Beitz DC, Freeman AE, Mayfield JE, Myers AM (1991) Replacement of bovine mitochondrial DNA by a sequence variant within one generation. Genetics 129: 247–255

    Google Scholar 

  • Laipis PJ, Van De Walle MJ, Hauswirth WW (1988) Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc Natl Acad Sci USA 85: 8107–8110

    Google Scholar 

  • La Roche J, Snyder M, Cook DI, Fuller K, Zouros E (1990) Molecular characterization of a repeat element causing largescale variation in the mitochondrial DNA of the sea scallop, Placopecten magellanicus. Mol Biol Evol 7: 45–64

    Google Scholar 

  • Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155

    Google Scholar 

  • Monnerot M, Mounolou J-C, Solignac M (1984) Intra-individual length heterogeneity of Rana esculenta mitochondrial DNA. Biol Cell 52: 213–218

    Google Scholar 

  • Moritz C, Brown WM (1986) Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science 233: 1425–1427

    CAS  PubMed  Google Scholar 

  • Moritz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content. Proc Natl Acad Sci USA 84: 7183–7187

    Google Scholar 

  • Moritz C (1991) Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic Geckos, Heteronotia binoei. Genetics 129: 221–230

    Google Scholar 

  • Mulligan TJ, Chapman RW (1989) Mitochondrial DNA analysis of Chesapeake Bay white perch, Morone americana. Copea 1989(3): 679–688

    Google Scholar 

  • Nelson I, Degoul F, Obermaier-Kusser B, Romero N, Borrone C, Marsac C, Vaysierre JL, Gerbitz K, Fardeau M, Ponsot G, Lestienne P (1989) Mapping of heteroplasmic mitochondrial DNA deletions in Kearns-Sayre syndrome. Nucleic Acids Res 17: 8117–8124

    Google Scholar 

  • Prosser CL (1973) Comparative animal physiology, 3rd ed. WB Saunders Co, Philadelphia, PA

    Google Scholar 

  • Rand DM, Harrison RG (1986) Mitochondrial DNA transmission genetics in crickets. Genetics 114: 955–970

    Google Scholar 

  • Rand DM, Harrison RG (1989) Molecular population genetics of mtDNA size variation in crickets. Genetics 121: 551–569

    Google Scholar 

  • Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467

    Google Scholar 

  • Smith DR, Brown WM (1990) Restriction endonuclease cleavage site and length polymorphism in mitochondrial DNA of Apis mellifera mellifeerea and A. m. carnica (Hymenoptera Apidae). Ann Entomol Soc Am 83: 81–88

    Google Scholar 

  • Snyder M, Fraser AR, La Roche J, Gartner-Kepkay KE, Zouros E (1987) Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proc Natl Acad Sci USA 84: 7595–7599

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, Second Edition. W.H. Freeman, San Francisco

    Google Scholar 

  • Solignac M, Generemont J, Monnerot M, Mounolou JC (1984) Genetics of mitochondria in Drosophila: inheritance in heteroplasmic strains of D. mauritiana. Mol Gen Genet 197: 183–188

    Google Scholar 

  • Solignac M, Generemont J, Monnerot M, Mounolou JC (1987) Drosophila mitochondrial genetics: evolution of heteroplasmy through germ line cell divisions. Genetics 117: 687–696

    Google Scholar 

  • Solignac M, Monnerot M, Mounolou JC (1983) Mitochondrial DNA heteroplasmy in Drosophila mauritiana. Proc Natl Acad Sci USA 80: 6942–6946

    Google Scholar 

  • Solignac M, Monnerot M, Mounolou JC (1986) Concerted evolution of sequence repeats in Drosophila mitochondrial DNA. J Mol Evol 24: 53–60

    Google Scholar 

  • Wallace DC (1982) Structure and evolution of organelle genomes. Microbiol Rev 46: 208–240

    Google Scholar 

  • Wallis GP (1987) Mitochondrial DNA insertion polymorphism and germline heteroplasmy in the Trturus cristatus species complex. Heredity 58: 229–238

    Google Scholar 

  • Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128: 607–617

    Google Scholar 

  • Wirgin II, Proenca R, Grossfield J (1989) Mitochondrial DNA diversity among populations of striped bass in the southeastern United States. Can J Zool 67: 891–907

    Google Scholar 

  • Zevering CE, Moritz C, Heidman A, Sturm RA (1992) Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronoti binoei; Gekkonidae). J Mol Evol 33: 431–441

    Google Scholar 

  • Zeviani M, Servidei S, Gellera C, Bertini E, Dimauro S (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339: 309–311

    Google Scholar 

  • Zouros E, Pogson GH, Cook DI, Dadswell MJ (1992) Apparent selective neutrality of mitochondrial DNA size variation: a test in the deep sea scallop Placopecten magellanicus. Evolution 46: 1466–1476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, D.M. Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol 37, 281–295 (1993). https://doi.org/10.1007/BF00175505

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175505

Key words

Navigation