Skip to main content
Log in

The complete intron/exon structure of Ephydatia mülleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have completed the analysis of a genomic clone, G238, that contains most of the coding region of the sponge COLF1 fibrillar collagen gene. The main triple helical domain is encoded by 31 exons. Except for the 5′ junction exon and the two last 3′ exons (126 and 18 base pairs), all these exons are related to a 54-bp unit and begin with an intact glycine codon. A good correlation can be made between this sponge gene and a vertebrate fibrillar collagen gene, revealing the high conservation of the members of this family during evolution. The reconstitution of an ancestral collagen gene can be made by considering all the exon/intron junctions of these genes. We suggest that such an ancestral gene arose from multiple duplications of a 54-bp exon and a (54 + 45)-bp module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pair(s)

kb:

kilobase(s)

C-protease:

the enzyme that cleaves the carboxyl-terminal propeptide

References

  • Buttice G, Kaytes P, d'Armiento J, Vogeli G, Kurkinen M (1990) Evolution of collagen IV genes from a 54-base pair exon: a role for introns in gene evolution. J Mol Evol 30: 479–488

    Google Scholar 

  • D'Alessio M, Ramirez F, Suzuki H, Solursh M, Gambino R (1989) Structure and developmental expression of a sea urchin fibrillar collagen gene. Proc Natl Acad Sci USA 86: 9303–9307

    Google Scholar 

  • Dardel F, Bensoussan P (1988) DNAid: A Macintosh full screen editor featuring a built-in regular expression interpreter for the search of specific patterns in biological sequences using finite state automata. Cabins 4: 483–486

    Google Scholar 

  • de Wet W, Bernard M, Benson-Chanda V, Chu ML, Dickson L, Weil D, Ramirez F (1987) Organization of the human pro-α2(I) collagen gene. J Biol Chem 262: 16032–16036

    Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272: 581–582

    Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci USA 87: 6669–6673

    Google Scholar 

  • Exposito JY, Ouazana R, Garrone R (1990) Cloning and sequencing of a Porifera partial cDNA coding for a short-chain collagen. Eur J Biochem 190: 401–406

    Google Scholar 

  • Exposito JY, Le Guellec D, Lu Q, Garrone R (1991) Short chain collagens in sponges are encoded by a family of closely related genes. J Biol Chem 266: 21923–21928

    Google Scholar 

  • Exposito JY, D'Alessio M, Solursh M, Ramirez F (1992a) Sea urchin collagen evolutionarily homologous to vertebrate proα2(I) collagen. J Biol Chem 267: 15559–15562

    Google Scholar 

  • Exposito JY, D'Alessio M, Ramirez F (1992b) Novel amino-terminal propeptide configuration in a fibrillar procollagen undergoing alternative splicing. J Biol Chem 267: 17404–17408

    Google Scholar 

  • Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53: 717–748

    Article  CAS  PubMed  Google Scholar 

  • Gail F, Wiedemann H, Mann K, Kühn K, Timpl R, Engel J (1991) Molecular characterization of cuticle and interstitial collagens from worms collected at deep sea hydrothermal vents. J Mol Biol 220: 209–223

    Google Scholar 

  • Gilbert W, Marchionni M, McKnight G (1986) On the antiquity of introns. Cell 46: 151–154

    Google Scholar 

  • Giudice GJ, Squiquera HL, Elias PM, Diaz LA (1991) Identification of two collagen domains within the bullous pemphigoid autoantigen, BP 180. J Clin Invest 87: 734–738

    Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature London 343: 531–535

    Google Scholar 

  • Kuivaniemi H, Tromp G, Prockop DJ (1991) Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J 5: 2052–2060

    Google Scholar 

  • Marchant JK, Linsenmayer TF, Gordon MK (1991) cDNA analysis predicts a cornea-specific collagen. Proc Natl Acad Sci USA 88: 1560–1564

    Google Scholar 

  • Mayne R, Burgeson RE (1987) Structure and function of collagen types. Academic Press, Orlando

    Google Scholar 

  • Padgett RA, Grabowski PJ, Konarska MM, Seilers S, Sharp PA (1986) Splicing of messenger RNA precursors. Ann Rev Biochem 55: 1119–1150

    Google Scholar 

  • Pan TC, Zhang RZ, Mattei MG, Timpl R, Chu ML (1992) Cloning and chromosomal location of human α1(XVI) collagen. Proc Natl Acad Sci USA 89: 6565–6569

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    CAS  PubMed  Google Scholar 

  • Shih MC, Heinrich P, Goodman HM (1988) Intron existence predated the divergence of eukaryotes and prokaryotes. Science 242: 1164–1166

    Google Scholar 

  • Su MW, Benson-Chanda V, Vissing H, Ramirez F (1989) Organization of the exons coding for proα1(II) collagen N-propeptide confirms a distinct evolutionary history of this domain of the fibrillar collagen genes. Genomics 4: 438–441

    Google Scholar 

  • Su MW, Suzuki MR, Bieker JJ, Solursh M, Ramirez F (1991) Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stagespecific production of alternatively spliced transcripts. J Cell Biol 115: 565–575

    Google Scholar 

  • van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5: 2814–2823

    Google Scholar 

  • Vuorio E, de Crombrugghe B (1990) The family of collagen genes. Annu Rev Biochem 59: 837–872

    Google Scholar 

  • Wozney J, Hanahan D, Tate V, Boedtker H, Doty P (1981) Structure of the proα2(I) collagen gene. Nature 294: 129–135

    Google Scholar 

  • Yamada Y, Avvedimento VE, Mudryj M, Ohkubo H, Vogeli G, Irani M, Pastan I, de Crombrugghe B (1980) The collagen gene: evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bases. Cell 22: 887–893

    Google Scholar 

  • Zagursky RJ, Berman ML, Baumeister K, Lomax N (1986) Rapid and easy sequencing of large linear double stranded DNA and supercoiled plasmid DNA. Gene Anal Tech 2: 232–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exposito, JY., van der Rest, M. & Garrone, R. The complete intron/exon structure of Ephydatia mülleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module. J Mol Evol 37, 254–259 (1993). https://doi.org/10.1007/BF00175502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175502

Key words

Navigation