Skip to main content

A genetic algorithm tutorial

Abstract

This tutorial covers the canonical genetic algorithm as well as more experimental forms of genetic algorithms, including parallel island models and parallel cellular genetic algorithms. The tutorial also illustrates genetic search by hyperplane sampling. The theoretical foundations of genetic algorithms are reviewed, include the schema theorem as well as recently developed exact models of the canonical genetic algorithm.

This is a preview of subscription content, access via your institution.

References

  1. Ackley, D. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer, Dordrecht.

    Google Scholar 

  2. Antonisse, H. J. (1989). A new interpretation of the schema notation that overturns the binary encoding constraint. In Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  3. Bäck, T., Hoffmeister, F. and Schwefel, H. P. (1991). A survey of evolution strategies. In Proceedings of the 4th International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  4. Baker, J. (1985). Adaptive selection methods for genetic algorithms. In Proceedings of the International Conference on Genetic Algorithms and Their Applications, ed. J. Grefenstette. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  5. Baker, J. (1987). Reducing bias and inefficiency in the selection algorithm. In Genetic Algorithms and Their Applications: Proceedings of the Second International Conference, ed. J. Grefenstette. Lawrence Erlbaum.

  6. Booker, L. (1987). Improving search in genetic algorithms. In Genetic Algorithms and Simulating Annealing, ed. L. Davis, pp. 61–73. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  7. Bridges, C. and Goldberg, D. (1987). An analysis of reproduction and crossover in a binary-coded genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, ed. J. Grefenstette. Lawrence Erlbaum.

  8. Collins, R. and Jefferson, D. (1991). Selection in massively parallel genetic algorithms. In Proceedings of the 4th International Conference on Genetic Algorithms, pp. 249–256. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  9. Davidor, Y. (1991). A naturally occurring niche and species phenomenon: the model and first results. In Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 257–263. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  10. Davis, L. D. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

    Google Scholar 

  11. DeJong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Dissertation, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor.

    Google Scholar 

  12. Eshelman, L. (1991). The CHC adaptive search algorithm. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 256–283. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  13. Fitzpatrick, J. M. and Grefenstette, J. J. (1988). Genetic algorithms in noisy environments. Machine Learning, 3, 101–120.

    CAS  PubMed  Google Scholar 

  14. Fogel, D. and Atmar, J. W. (eds.) (1992). First Annual Conference on Evolutionary Programming.

  15. Fogel, L. J., Owens, A. J. and Walsh, M J. (1966). Artificial Intelligence Through Simulated Evolution. John Wiley, New York.

    Google Scholar 

  16. Goldberg, D. (1987). Simple genetic algorithms and the minimal, deceptive problem. In Genetic Algorithms and Simulated Annealing, ed. L. Davis. Pitman, London.

    Google Scholar 

  17. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.

    Google Scholar 

  18. Goldberg, D. (1990). A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing. TCGA 90003, Engineering Mechanics, University of Alabama.

  19. Goldberg, D. (1991). The theory of virtual alphabets. In Parallel Problem Solving from Nature. Springer-Verlag, New York.

    Google Scholar 

  20. Goldberg, D. and Bridges, C. (1990). An analysis of a reordering operator on a GA-hard problem. Biological Cybernetics, 62, 397–405.

    CAS  PubMed  Google Scholar 

  21. Goldberg, D. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 69–93. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  22. Gorges-Schleuter, M. (1991). Explicit parallelism of genetic algorithms through population structures. In Parallel Problem Solving from Nature, pp. 150–159. Springer-Verlag, New York.

    Google Scholar 

  23. Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16, 122–128.

    Google Scholar 

  24. Grefenstette, J. J. (1993). Deception considered harmful. In Foundations of Genetic Algorithms 2, ed. D. Whitley, pp. 75–91. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  25. Grefenstette, J. J. and Baker, J. (1989). How genetic algorithms work: a critical look at implicit parallelism. In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  26. Hillis, D. (1990). Co-evolving parasites improve simulated evolution as an optimizing procedure. Physica D, 42, 228–234.

    Google Scholar 

  27. Holland, J. (1975). Adaptation In Natural and Artificial Systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  28. Liepins, G. and Vose, M. (1990). Representation issues in genetic algorithms. Journal of Experimental and Theoretical Artificial Intelligence, 2, 101–115.

    Google Scholar 

  29. Manderick, B. and Spiessens, P. (1989). Fine grained parallel genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, pp. 428–433. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  30. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-Verlag, New York.

    Google Scholar 

  31. Mühlenbein, H. (1991). Evolution in time and space—the parallel genetic algorithm. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 316–337. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  32. Mühlenbein, H. (1992). How genetic algorithms really work: I. Mutation and hillclimbing. In Parallel Problem Solving from Nature 2, eds. R. Männer and B. Manderick. North Holland, Amsterdam.

    Google Scholar 

  33. Nix, A. and Vose, M. (1992). Modelling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence, 5, 79–88.

    Google Scholar 

  34. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart.

    Google Scholar 

  35. Schaffer, J. D. (1987). Some effects of selection procedures on hyperplane sampling by genetic algorithms. In Genetic Algorithms and Simulated Annealing, ed. L. Davis. Pitman, London.

    Google Scholar 

  36. Schaffer, J. D. and Eshelman, L. (1993). Real-coded genetic algorithms and interval schemata. Foundations of Genetic Algorithms, 2, ed. D. Whitley. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  37. Schwefel, H. P. (1975). Evolutionsstrategie und numerische Optimierung. Dissertation, Technische Universität Berlin.

  38. Schwefel, H. P. (1981). Numerical Optimization of Computer Models. John Wiley, New York.

    Google Scholar 

  39. Spears, W. and DeJong, K. (1991). An analysis of multi-point crossover. In Foundations of Genetic Algorithms, ed. G. Rawlins. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  40. Syswerda, G. (1989). Uniform crossover in genetic algorithms. Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  41. Syswerda, G. (1991). A study of reproduction in generational and steady-state genetic algorithms. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 94–101. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  42. Starkweather, T., Whitley, D. and Mathias, K. (1991). Optimization using distributed genetic algorithms. In Parallel Problem Solving from Nature. Springer-Verlag, New York.

    Google Scholar 

  43. Tanese, R. (1989). Distributed genetic algorithms. Proceedings of the Third International Conference on Genetic Algorithms, pp. 434–439. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  44. Vose, M. (1993). Modeling simple genetic algorithms. In Foundations of Genetic Algorithms 2, ed. D. Whitley, pp. 63–73. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  45. Vose, M. and Liepins, G. (1991). Punctuated equilibria in genetic search. Complex Systems, 5, 31–44.

    Google Scholar 

  46. Whitley, D. (1989). The GENITOR algorithm and selective pressure. Proceedings of the Third International Conference on Genetic Algorithms, pp. 116–121. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  47. Whitley, D. (1991). Fundamental principles of deception in genetic search. In Foundations of Genetic Algorithms, ed. G. Rawlins. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  48. Whitley, D. (1993a). An executable model of a simple genetic algorithm. In Foundations of Genetic Algorithms 2, ed. D. Whitley. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  49. Whitley, D. (1993b). Cellular genetic algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  50. Whitley, D. and Kauth, J. (1988). GENITOR: a different genetic algorithm. In Proceedings of the Rocky Mountain Conference on Artificial Intelligence, Denver, CO, pp. 118–130.

  51. Whitley, D. and Starkweather, T. (1990). Genitor II: a distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2, 189–214.

    Google Scholar 

  52. Whitley, D., Das, R. and Crabb, C. (1992). Tracking primary hyperplane competitors during genetic search. Annals of Mathematics and Artificial Intelligence, 6, 367–388.

    Google Scholar 

  53. Winston, P. (1992). Artificial Intelligence, 3rd edn. Addison-Wesley, Reading, MA.

    Google Scholar 

  54. Wright, A. (1991). Genetic algorithms for real parameter optimization. In Foundations of Genetic Algorithms, ed. G. Rawlins. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  55. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress on Genetics, pp. 356–366.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whitley, D. A genetic algorithm tutorial. Stat Comput 4, 65–85 (1994). https://doi.org/10.1007/BF00175354

Download citation

Keywords

  • Genetic algorithms
  • search
  • parallel algorithms