Skip to main content
Log in

Automated sequencing of amino acid spin systems in proteins using multidimensional HCC(CO)NH-TOCSY spectroscopy and constraint propagation methods from artificial intelligence

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

We have developed an automated approach for determining the sequential order of amino acid spin systems in small proteins. A key step in this procedure is the analysis of multidimensional HCC(CO)NH-TOCSY spectra that provide connections from the aliphatic resonances of residue i to the amide resonances of residue i+1. These data, combined with information about the amino acid spin systems, provide sufficient constraints to assign most proton and nitrogen resonances of small proteins. Constraint propagation methods progressively narrow the set of possible assignments of amino acid spin systems to sequence-specific positions in the process of NMR data analysis. The constraint satisfaction paradigm provides a framework in which the necessary constraint-based reasoning can be expressed, while an object-oriented representation structures and facilitates the extensive list processing and indexing involved in matching. A prototype expert system, AUTOASSIGN, provides correct and nearly complete resonance assignments with one real and 31 simulated 3D NMR data sets for a 72-amino acid domain, derived from the Protein A of Staphylococcus aureus, and with 31 simulated NMR data sets for the 50-amino acid human type-α transforming growth factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billeter M., Basus V.J. and Kuntz I.D. (1988) J. Magn. Reson., 76, 400–415.

    Google Scholar 

  • Billeter M., Braun W. and Wüthrich K. (1982) J. Mol. Biol., 155, 321–346.

    Google Scholar 

  • Bodenhausen G. and Ruben D.J. (1980) Chem. Phys. Lett., 69, 185–189.

    Google Scholar 

  • Boucher W., Laue E.D., Campbell-Burk S. and Domaille P.J. (1992) J. Am. Chem. Soc., 114, 2262–2264.

    Google Scholar 

  • Braunschweiler L. and Ernst R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Cieslar C., Holak T.A. and Oschkinat H. (1990) J. Magn. Reson., 87, 400–407.

    Google Scholar 

  • Dubs A., Wagner G. and Wüthrich K. (1979) Biochim. Biophys. Acta, 577, 177–194.

    Google Scholar 

  • Eads C.D. and Kuntz I.D. (1989) J. Magn. Reson., 82, 467–482.

    Google Scholar 

  • Forsythe G.E., Malcolm M.A. and Moler C.B. (1977) Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Grzesiek S. and Bax A. (1992a) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  • Grzesiek S. and Bax A. (1992b) J. Magn. Reson., 99, 201–207.

    Google Scholar 

  • Grzesiek S. and Bax A. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  • Grzesiek S., Anglister J. and Bax A. (1993) J. Magn. Reson. Ser. B, 101, 114–119.

    Google Scholar 

  • Ikura M., Kay L.E. and Bax A. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  • Kay L.E., Ikura M., Tschudin R. and Bax A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay L.E., Wittekind M., McCoy M.A., Friedrichs M.S. and Müller L. (1992) J. Magn. Reson., 98, 443–450.

    Google Scholar 

  • Kraulis P.J. (1989) J. Magn. Reson., 84, 627–633.

    Google Scholar 

  • Kumar V. (1992) AI Magazine, 13, 32–44.

    Google Scholar 

  • Li Y.-C. and Montelione G.T. (1993) J. Magn. Reson. Ser. B, 101, 315–319.

    Google Scholar 

  • Logan T.M., Olejniczak E.T., Xu R.X. and Fesik S.W. (1992) FEBS Lett., 314, 413–418.

    Google Scholar 

  • Lyons B.A. and Montelione G.T. (1993) J. Magn. Reson. Ser. B, 101, 206–209.

    Google Scholar 

  • Lyons B.A., Tashiro M., Cedergren L., Nilsson B. and Montelione G.T. (1993) Biochemistry, 32, 7839–7845.

    Google Scholar 

  • Mackworth A.K. (1977) Artif. Intell., 8, 99–118.

    Google Scholar 

  • Montelione G.T. and Wagner G. (1990) J. Magn. Reson., 87, 183–188.

    Google Scholar 

  • Montelione G.T., Lyons B.A., Emerson S.D. and Tashiro M. (1992) J. Am. Chem. Soc., 114, 10974–10975.

    Google Scholar 

  • Moy F.J., Li Y.-C., Rauenbuehler P., Winkler M.J., Scheraga H.A. and Montelione G.T. (1993) Biochemistry, 32, 7334–7353.

    Google Scholar 

  • Nelson S.J., Schneider D.M. and Wand A.J. (1991) Biophys. J., 59, 1113–1122.

    Google Scholar 

  • Oschkinat H., Holak T.A. and Ciesler C. (1991) Biopolymers, 31, 699–712.

    Google Scholar 

  • Piatini U., Sørensen O.W. and Ernst R.R. (1982) J. Am. Chem. Soc., 104, 6800–6801.

    Google Scholar 

  • Szyperski T., Neri D., Leiting B., Otting G. and Wüthrich K. (1992) J. Biomol. NMR, 2, 323–334.

    Google Scholar 

  • Wüthrich K. (1983) Biopolymers, 22, 131–138.

    Google Scholar 

  • Wüthrich K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Wüthrich K., Wider G., Wagner G. and Braun W. (1982) J. Mol. Biol., 155, 311–319

    Google Scholar 

  • Wüthrich K., Billeter M. and Braun W. (1984) J. Mol. Biol., 180, 715–740.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, D., Kulikowski, C., Wang, L. et al. Automated sequencing of amino acid spin systems in proteins using multidimensional HCC(CO)NH-TOCSY spectroscopy and constraint propagation methods from artificial intelligence. J Biomol NMR 4, 241–256 (1994). https://doi.org/10.1007/BF00175251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175251

Keywords

Navigation