Skip to main content

Advertisement

Log in

Computer-assisted 3D-reconstruction and statistics of the limbic system

2. Spatial statistics of the hippocampal formation, the fornix, and the mamillary bodies

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

A statistical method is described to show the distribution of neuroanatomical structures within a Cartesian coordinate system from any given number of examinations. The algorithm is based on polygons derived from the outlines of neuroanatomical structures in parallel canthomeatal-orientated cutting planes. These polygons are transformed in virtual voxels, rotated into the bicommissural coordinate system, and projected onto the three main planes of this coordinate system. Areas with the same probability for the structures examined are given in these planes. As an example this method is applied to the hippocampal formation and the results attained are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afshar F, Watkins ES, Yap JC (1978) Stereotaxic atlas of the human brainstem and cerebellar nuclei. Raven Press, New York

    Google Scholar 

  • Andrew J, Watkins ES (1969) A stereotactic atlas of the human thalamus and adjacent structures. Williams & Wilkins, Baltimore

    Google Scholar 

  • Atlas SW, Zimmermann RA, Larissa TB, Rorke L, Hackney DB, Goldberg HI, Grossmann RI (1986) Corpus callosum and limbic system: a neuroanatomic MR evaluation of developmental anomalies. Radiology 160:355–362

    Google Scholar 

  • Bergvall U, Rumeau C, Van Bunnen Y, Corbaz JM, Morel M (1988) External references of the bicommissural plane. In: Gouaze A, Salamon G (eds) Brain anatomy and magnetic resonance imaging. Springer, Berlin Heidelberg New York, pp 2–10

    Google Scholar 

  • Bosch DA (1986) Stereotactic techniques in clinical neurosurgery. Springer, Wien

    Google Scholar 

  • Feiden W, Steude U, Bise K, Gündisch O (1991) Accuracy of stereotactic brain tumor biopsy: Comparison of the histological findings in biopsy cylinders and resected tumor tissue. Neurosurg Rev 14:51–56

    Article  CAS  PubMed  Google Scholar 

  • Gademann G (1985) Normale Anatomie des Gehirns im Kernspintomogramm als Grundlage für therapeutische Eingriffe. Röntgenblätter 38:137–142

    Google Scholar 

  • Herman GT, Liu HK (1979) Three-dimensional display of human organs from computed tomograms. Proc Comput Graph Imaging 9:1–21

    Google Scholar 

  • Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauser BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865–874

    CAS  PubMed  Google Scholar 

  • Lang J, Stefanec P, Breitenbach W (1983) Über Form und Maße des Ventriculus tertius, von Sehbahnteilen und des N. oculomotorius. Neurochirurgia 26:1–5

    Google Scholar 

  • Latchaw RE, Lunsford LD, Kennedy WH (1985) Reformatted imaging to define the intercommissural line for CT-guided stereotaxic functional neurosurgery. AJNR 6:429–433

    Google Scholar 

  • Naidich TP, Daniels DL, Pech P, Haughton VM, Williams A, Pojunas K (1986) Anterior commissure: anatomic — MR correlation and use as landmark in three orthogonal planes. Radiology 158:421–429

    Google Scholar 

  • Pavlides T (1982) Algorithms for graphics and image processing. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Renella RR (1989) Microsurgery of the temporo-medial region. Springer, Wien

    Google Scholar 

  • Riechert T, Mundinger F (1955) Beschreibung und Anwendung eines Zielgerätes für stereotaktische Hirnoperationen (II. Modell). Acta Neurochir [Suppl III]:308–337

  • Schaltenbrand G, Bailey P (1959) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehirns. Thieme, Stuttgart

    Google Scholar 

  • Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  • Schaumann A (1989) Computergestützte Berechnung der Vereinigungs-, Schnitt- und Differenzmenge triangulierter Rekonstruktionen neuroanatomischer Strukturen. Diplomarbeit Fachbereich Mathematik, Universität Hannover

  • Spiegel EA, Wycis HT (1952) Stereoencephalotomy, Part I. Methods and stereotaxic atlas of the human brain. Grune & Stratton, New York

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Talairach J, David M, Tournoux P, Corredor H, Kvasina T (1957) Atlas d'anatomie stéréotaxique. Masson, Paris

    Google Scholar 

  • Tailairach J, Szikla G, Tournoux P, Prossalentis A, Bordas-Ferrer M, Covello L, Iacob M, Mempel E (1967) Atlas d'anatomie stéréotaxique du télencéphale. Masson, Paris

    Google Scholar 

  • Tokunaga A, Takase M, Otani K (1977) The glabella-inion line as a baseline for CT scanning of the brain. Neuroradiology 14:67–71

    Google Scholar 

  • VanBuren JM, Borke RC (1972) Variations and connections of the human thalamus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • VanBuren JM, Maccubin DA (1962) An outline atlas of the human basal ganglia with estimation of anatomical variants. J Neurosurg (Chicago) 19:811–839

    Google Scholar 

  • Wahren W, Braitenberg V (1959) Das Gehirn als Ganzes. II. Zur Stereotaxie. In: Schaltenbrand G, Bailey P (eds) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehirns, vol 1. Thieme, Stuttgart, pp 58–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerke, M., Schütz, T., Vogt, H. et al. Computer-assisted 3D-reconstruction and statistics of the limbic system. Anat Embryol 186, 137–143 (1992). https://doi.org/10.1007/BF00174951

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174951

Key words

Navigation