Skip to main content
Log in

Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Neural Ca2+-binding proteins (NCaPs) constitute a subfamily of 4-EF-hand proteins, and display a histological and structural dichotomy: the A-type NCaPs are selectively expressed by the retina and pineal organ and display two canonical EF-hands, whereas the B-type NCaPs are found in the entire brain and present three regular EF-hands. In this study, antisera were raised against the A-type NCaP recoverin (26 kDa) and the B-type NCaPs VILIP and NCS-1 (22 kDa). Since the sequence identity among NCaPs is high, specific polyclonal antibodies were purified by double cross-immunoaffinity chromatography; both ELISA and immunoblot analyses determined that the resulting antibodies showed selectivity ratios inferior to 1/363 for the two other related NCaPs. Besides, the anti-VILIP antibodies displayed some affinity toward neurocalcin δ, and the antirecoverin antibodies recognized a 24 kDa protein, which is most likely visinin. Thus, immunohistochemical studies on the chicken, rat and cow retina revealed that anti-recoverin antibodies recognized the vertebrate photoreceptors and a small number of mammalian bipolar cells. Anti-VILIP antibodies exclusively labelled the inner Retina, I.e. the amacrine and ganglion cells. NCS-1 was mainly present in the photoreceptor inner segments, the inner plexiform layer and the ganglion cells. NCS-1 showed the highest species disparity. The retinal localization of NCS-1 and VILIP offered an important morphological basis for the understanding of their function. Furthermore, specific antibodies against the NCaPs may enable the identification of cell populations in more complex neural tissues, such as the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Leinders-Zufall, T., Kocsis, J. D., Shepherd, G. M., Zufall, F. & Barnstable, C. J. (1994) Retinal ganglion cells express a cGMP-gated cation conductance activable by nitric oxide donors. Neuron 12, 155–65.

    Google Scholar 

  • Andressen, C., Blümcke, I. & Celio, M. R. (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res. 271, 181–208.

    Google Scholar 

  • Barnstable, C. J. (1993) Glutamate and GABA in retinal circuitry. Curr. Opin. Neurobiol. 3, 520–5.

    Google Scholar 

  • Bairoch, A. & Cox, J. A. (1990) EF-hand motifs in inositol phospholipid specific phospholipase C. FEBS Lett. 269, 454–6.

    Google Scholar 

  • Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–54.

    Google Scholar 

  • Brann, M. R. & Cohen, L. V. (1987) Diurnal expression of transducin mRNA and translocation of transducin in rods of rat retina. Science 235, 585–7.

    Google Scholar 

  • Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neurosci. 35, 375–475.

    Google Scholar 

  • Cox, J. A., Durussel, I., Comte, M., Nef, S., Nef, P., Lenz, S. E. & Gundelfinger, E. D. (1994) Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. J. Biol. Chem. 269, 32 807–13.

    Google Scholar 

  • Dizhoor, A. M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K. A., Philippov, P. P., Hurlay, J. B. & Stryer, L. (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251, 915–8.

    Google Scholar 

  • Flaherty, K. M., Zozulya, S., Stryer, L. & Mckay, D. B. (1993) Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75, 709–16.

    Google Scholar 

  • Gillespie, P. G. & Hudspeth, A. J. (1991) Chemiluminescence detection of proteins from single cells. Proc. Natl Acad. Sci. USA 88, 2563–7.

    Google Scholar 

  • Gorodovikova, E. N., Senin, I. I. & Philippov, P. P. (1994) Calcium-sensitive control of rhodopsin phosphorylation in the reconstituted system consisting of photoreceptor membranes, rhodopsin kinase and recoverin. FEBS Lett. 353, 171–2.

    Google Scholar 

  • Gray-Keller, M. P., Polans, A. S., Palczewski, K. & Detwiler, P. B. (1993) The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Neuron 10, 523–31.

    Google Scholar 

  • Harlow, E. & Lane, D. (1988) Antibodies, a Laboratory Manual. New York: Cold Spring Harbor.

    Google Scholar 

  • Kajimoto, Y., Shirai, Y., Mukai, H., Kuno, T. & Tanaka, C. (1993) Molecular cloning of two additional members of the neural visinin-like Ca2+-binding protein gene family. J. Neurochem. 61, 1091–6.

    Google Scholar 

  • Kawamura, S., Takamatsu, K. & Kitamura, K. (1992) Purification and characterization of S-modulin, a calcium-dependent regulator on cGMP phosphodiesterase in frog rod photoreceptors. Biochem. Biophys. Res. Commun. 186, 411–7.

    Google Scholar 

  • Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F. & Kuo, C.-H. (1993) Recoverin has S-modulin activity in frog rods. J. Biol. Chem. 268, 14579–82.

    Google Scholar 

  • Kawamura, S., Cox, J. A. & Nef, P. (1994) Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin. Biochem. Biophys. Res. Commun. 203, 121–7.

    Google Scholar 

  • Kobayashi, M., Takamatsu, K., Saitoh, S., Miura, M. & Noguchi, T. (1992) Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in the hippocampus. Biochem. Biophys. Res. Commun. 189, 511–7.

    Google Scholar 

  • Korf, H.-W., White, B. H., Schaad, N. C. & Klein, D. C. (1992) Recoverin in pineal organs and retinas of various vertebrate species including man. Brain Res. 595, 57–66.

    Google Scholar 

  • Kretsinger, R. H. (1987) Calcium coordination and the calmodulin fold, divergent versus convergent evolution. Cold Spring Harbor Symp. Quant. Biol. 52, 499–510.

    Google Scholar 

  • Kretsinger, R. H. & Nakayama, S. (1993) Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins. J. Mol. Evol. 36, 477–88.

    Google Scholar 

  • Kuno, T., Kajimoto, Y., Hashimoto, T. & Tanaka, C. (1992) cDNA cloning of a neural visinin-like Ca2+-binding protein. Biochem. Biophys. Res. Commun. 184, 1219–25.

    Google Scholar 

  • Kuo, C.-H. & Miki, N. (1989) Translocation of a photoreceptor-specific MEKA protein by light. Neurosci. Lett. 103, 8–10.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.

    Google Scholar 

  • Lenz, S. E. & Gundelfinger, E. D. (1994) The calcium-binding protein VILIP, a member of the visinin/ recoverin subfamily of EF-hand proteins, binds actin and is expressed in a subset of neurons in the chicken brain. 3rd Eur. Symp. Calcium Binding Proteins in Normal and Transformed Cells, Zürich, Switzerland, 8.

  • Lenz, S. E., Henschel, Y., Zopf, D., Voss, B. & Gundelfinger, E. D. (1992) VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chick brain. Molec. Brain Res. 15, 133–40.

    Google Scholar 

  • Mcginnis, J. F., Stepanik, P. L., Baehr, W., Subbaraya, I. & Lerious, V. (1992) Cloning and sequence of the 23 kDa mouse photoreceptor cell specific protein. FEBS Lett. 302, 172–6.

    Google Scholar 

  • Milam, A. H., Dacey, D. M., & Dizhoor, A. (1993) Recoverin immunoreactivity in mammalian cone bipolar cells. Vis. Neurosci. 10, 1–12.

    Google Scholar 

  • Mirshahi, M., Thillaye, B., Tarraf, M., DeKozak, Y. & Faure, J.-P. (1994) Light-induced changes in S-antigen (arrestin) localization in retinal photoreceptors: differences between rods and cones and defective process in RCS rat retinal dystrophy. Eur. J. Cell Biol. 63, 61–7.

    Google Scholar 

  • Murakami, A., Yajima, T. & Inana, G. (1992) Isolation of human retinal genes: recoverin cDNA and gene. Biochem. Biophys. Res. Commun. 187, 234–44.

    Google Scholar 

  • Nakano, A., Terasawa, M., Watanabe, M., Usuda, N., Morita, T. & Hidaka, H. (1992) Neurocalcin, a novel calcium binding protein with three EF-hand domains, expressed in retinal amacrine cells and ganglion cells. Biochem. Biophys. Res. Commun. 186, 1207–11.

    Google Scholar 

  • Nef, S., Fiumelli, H., De Castro, E., Raes, M.-B. & Nef, P. (1995) Identification of a neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. J. Recept. Res. 15 (in press).

  • Okazaki, K., Watanabe, M., Ando, Y., Hagiwara, M., Terasawa, M. & Hidaka, H. (1992) Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem. Biophys. Res. Commun. 185, 147–53.

    Google Scholar 

  • Pauls, T. L., Durussel, I., Berchtold, M. W., & Cox, J. A. (1994) Inactivation of individual Ca2+-binding sites in paired EF-hand sites of parvalbumin reveals asymmetric metal-binding properties. Biochemistry 33, 10393–400.

    Google Scholar 

  • Philp, N. J., Chang, W. & Long, K. (1987) Light stimulated protein movement in rod photoreceptor cells in the rat retina. FEBS Lett. 225, 127–32.

    Google Scholar 

  • Pochet, R., Pasteels, B., Seto-Ohshima, A., Bastianelli, E., Kitajima, S. & VanEldik, L. J. (1991) Calmodulin and calbindin localization in retina from six vertebrate species. J. Comp. Neurol. 314, 750–62.

    Google Scholar 

  • Polans, A. S., Buczylko, J., Crabb, J. & Palczewski, K. (1991) A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. J. Cell Biol. 112, 981–9.

    Google Scholar 

  • Polans, A. S., Burton, M. D., Halley, T. M., Crabb, J. W. & Palczewski, K. (1993) Recoverin, but not visinin, is an autoantigen in the human retina identified with a cancer-associated retinopathy. Invest. Ophthalmol. Vis. Sci. 34, 81–90.

    Google Scholar 

  • Pongs, O., Lindemeier, J., Zhu, X. R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambert, H.-G., Koch, K. W., Schwemer, J., Rivosecchi, R., Mallart, A., Galceran, J., Canal, I., Barbas, J. A. & Ferrús, A. (1993) Frequenin — a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15–28.

    Google Scholar 

  • Ray, S., Zozulya, S., Niemi, G. A., Flaherty, K. M., Brolley, D., Dizhoor, A. M., Mckay, D., Hurley, H. & Stryer, L. (1992) Cloning, expression and crystallization of recoverin, a calcium sensor in vision. Proc. Natl Acad. Sci. USA 89, 5705–9.

    Google Scholar 

  • Sanna, P. P., Keyser, K. T., Celio, M. R., Karten, H. J. & Bloom, F. E. (1993) Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 600, 141–50.

    Google Scholar 

  • Shiells, R. A. & Falk, G. (1990) Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G protein. Proc. R. Soc. Lond. B 242, 91–4.

    Google Scholar 

  • Shiells, R. A. & Falk, G. (1992) The glutamate-receptor linked cGMP cascade of retinal on-bipolar cells is pertussis and cholera toxin-sensitive. Proc. R. Soc. Lond. B 247, 17–20.

    Google Scholar 

  • Stepanik, P. L., Lerious, V. & Mcginnis, J. F. (1993) Developmental appearance, species and tissue specificity of mouse 23-kDa, a retinal calcium-binding protein (recoverin). Exp. Eye Res. 57, 189–97.

    Google Scholar 

  • Takamatsu, K., Kitamura, K. & Noguchi, T. (1992) Isolation and characterization of recoverin-like Ca2+-binding protein from rat brain. Biochem. Biophys. Res. Commun. 183, 245–51.

    Google Scholar 

  • Terasawa, M., Nakano, A., Kobayashi, R. & Hidaka, H. (1992) Neurocalcin: a novel calcium-binding protein from bovine brain. J. Biol. Chem. 267, 19596–9.

    Google Scholar 

  • Thirkill, C. E., Tait, R. C., Tyler, N. K., Roth, A. M. & Keltner, J. L. (1992) The cancer-associated retinopathy antigen is a recoverin-like protein. Invest. Ophthalmol. Vis. Sci. 33, 2768–72.

    Google Scholar 

  • Wässle, H., Grünert, U., Martin, P. R. & Boycott, B. B. (1994) Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res. 34, 561–79.

    Google Scholar 

  • Whelan, J. P. & Mcginnis, J. F. (1988) Light-dependent subcellular movement of photoreceptor proteins. J. Neurosci. Res. 20, 263–70.

    Google Scholar 

  • Wiechmann, A. F. & Hammarback, J. A. (1993) Expression of recoverin mRNA in the human retina: localisation by in situ hybridization. Exp. Eye Res. 57, 763–9.

    Google Scholar 

  • Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H. & Miki, N. (1990) Visinin: a novel calcium binding protein expressed in retinal cone cells. Neuron 4, 469–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Raad, S., Comte, M., Nef, P. et al. Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina. Histochem J 27, 524–535 (1995). https://doi.org/10.1007/BF00174325

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174325

Keywords

Navigation