Skip to main content
Log in

Genesis of neurons of the retinal ganglion cell layer in the opossum

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

In this study, we have examined the genesis of neurons of the retinal ganglion cell layer of the opossum Didelphis marsupialis by [3H]-thymidine autoradiography. Our results suggest that most neurons surviving to adulthood are generated in postnatal life from day 1 to day 23. Cells are generated according to a coarse gradient from the retinal geometric center to the periphery. Regional analysis of soma size distributions in different cohorts suggest that this gradient is actually formed by two partially-overlapping, concentric waves of cell proliferation. Most medium and large ganglion cells are formed during the early wave, whereas most displaced amacrine cells and small ganglion cells are formed during the late wave. Our results confirm the appropriateness of the opossum as a model for studies of development of the mammalian visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allodi S, Reese BE, Cavalcante LA (1990) Observations on the arrangement of axons according to diameter in the optic tract of the opossum Didelphis marsupialis. Braz J Med Biol Res 23:539–542

    Google Scholar 

  • Barradas PC, Cavalcante LA, Mendez-Otero R, Vieira AM (1989) Astroglial differentiation in the opossum superior colliculus. Glia 2:103–111

    Google Scholar 

  • Bhattacharyya GK, Johnson RA (1977) Statistical concepts and methods. Wiley, New York, 640 pp

    Google Scholar 

  • Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat's retina. J Physiology (Lond) 240:397–419

    Google Scholar 

  • Cavalcante LA (1987) Postnatal neurogenesis and the formation of neural connections in the visual system of a marsupial. In: Chagas C, Linden R (eds) Developmental neurobiology of mammals, Pontifical Academy, Vatican, pp 1–29

    Google Scholar 

  • Cavalcante LA, Rocha-Miranda CE (1978a) Development of retino-hypothalamic and accessory optic projections in the opossum. Brain Res 144:378–382

    Google Scholar 

  • Cavalcante LA, Rocha-Miranda CE (1978b) Postnatal development of retinogeniculate, retinopretectal and retinotectal projections in the opossum. Brain Res 146:231–248

    Google Scholar 

  • Cavalcante LA, Santos-Silva A (1990) Microglia in the developing opossum superior colliculus. Soc Neurosci Abstr 16:690

    Google Scholar 

  • Cavalcante LA, Rocha-Miranda CE, Linden R (1984) Observations on postnatal neurogenesis in the superior colliculus and the pretectum in the opossum. Dev Brain Res 13:241–249

    Google Scholar 

  • Cavalcante LA, Allodi S, Reese BE (1991a) The arrangement of axons by size and laterality of projection in the opossum's optic tract. Soc Neurose Abstr 17:1133

    Google Scholar 

  • Cavalcante LA, Barradas PC, Martinez AMB (1991b) Patterns of myelination in the developing opossum superior colliculus with additional reference to the optic tract. Anat Embryol 183:273–285

    Google Scholar 

  • David G (1955) The effect of eliminating shrinkage artifacts on degenerative changes seen in the CNS material. Excerpta Medica VIII (Neurology) 8:777–778

    Google Scholar 

  • Dräger U (1985) Birthdates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse. Proc R Soc London [Biol] 224:57–77

    Google Scholar 

  • Dräger U, Olsen JF (1981) Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci 20:285–293

    Google Scholar 

  • Ebbesson SOE (1984) Evolution and ontogeny of neural circuits. Behav Brain Sci 7:321–366

    Google Scholar 

  • Gardner AL (1973) The systematics of the Genus Didelphis (Marsupialia: Didelphidae) in North and Middle America. Special Publication No. 4, The Museum Texas Tech University, Lubbock, 81 pp

    Google Scholar 

  • Gawryszewski LG, Hokoç JN (1981) The naso-temporal division of the opossum's retina. An Acad Bras Cien 53:632–633

    CAS  PubMed  Google Scholar 

  • Guillery RW, Polley EH, Torrealba F (1982) The arrangement of axons according to fiber diameter in the optic tract of the cat. J Neurosci 2:714–721

    Google Scholar 

  • Harman AM, Beazley LD (1987) Patterns of cytogenesis in the developing retina of the wallaby Setonix brachiurus. Anat Embryol 177:123–130

    Google Scholar 

  • Harman AM, Beazley LD (1989) Generation of retinal cells in the wallaby, Setonix brachyurus (quokka). Neuroscience 28:219–232

    Google Scholar 

  • Henderson Z, Finlay BL, Wikler KC (1988) Development of ganglion cell topography in ferret retina. J Neurosci 8:1194–1205

    Google Scholar 

  • Herman KG, Steinberg RH (1982) Melanosome metabolism in the retinal pigmented epithelium of the opossum. Cell Tissue Res 227:485–507

    Google Scholar 

  • Hokoç JN (1982) The retinal ganglion cell layer of the opossum Didelphis marsupialis aurita. Proceedings of the third JapanBrazil symposium of science and technology, Gakushi-Kaikan, Kanda, Tokyo, pp 173–185

    Google Scholar 

  • Hokoç JN, Moraes AN (1991) Beta-like ganglion cells in the opossum retina: a Golgi study. Invest Ophthalmol Vis Sci 32:1991

    Google Scholar 

  • Hokoç JN, Oswaldo-Cruz E (1979) A regional specialization in the opossum retina: quantitative analysis of the ganglion cell layer. J Comp Neurol 183:385–396

    Google Scholar 

  • Hollander M, Wolfe DA (1973) Non-parametric statistical methods, Wiley, New York, 503 pp

    Google Scholar 

  • Hoskins SG, Grobstein P (1985) Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. J Neurosci 5:920–929

    Google Scholar 

  • Illing RB, Wässle H (1981) The retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. J Comp Neurol 202:265–285

    Google Scholar 

  • Jeffery G (1985) The relationship between cell density and the nasotemporal division in the rat retina. Brain Res 347:354–357

    Google Scholar 

  • Kirby MA, Wilson PD, Fischer TM (1988) Development of the optic nerve of the opossum (Didelphis virginiana). Dev Brain Res 44:37–48

    Google Scholar 

  • Kopriwa BM, Leblond CP (1962) Improvements in the coating technique of radioautography. J Histochem Cytochem 10:269–284

    Google Scholar 

  • La Vail MM, Rapaport DH, Rakic P (1991) Cytogenesis in the monkey retina. J Comp Neurol 309:86–114

    Google Scholar 

  • Masland RH, Mills JW, Hayden SA (1984) Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers. Proc R Soc Lond [Biol] 223:79–100

    Google Scholar 

  • McCrady Jr E (1938) The embryology of the opossum. Am Anat Memoirs 16, Wistar Institute, Philadelphia, 233 pp

    Google Scholar 

  • Mendez-Otero R (1980) Organization of retinal, cortical and parabigeminal afferences to the superior colliculus in Didelphis marsupialis aurita (in Portuguese), MSc. thesis, Instituto de Biofisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 99 pp

    Google Scholar 

  • Mendez-Otero R, Cavalcante LA, Rocha-Miranda CE, Bernardes RF, Barradas PCR (1985) Growth and restriction of the ipsilateral retinocollicular projection in the opossum. Dev Brain Res 18:199–210

    Google Scholar 

  • Perry VH (1979) The ganglion cell layer of the retina of the rat: a Golgi study. Proc R Soc Lond [Biol] 204:363–375

    Google Scholar 

  • Rakic P (1973) Kinetics of proliferation and latency between final cell division and onset of differentiation of cerebellar stellate and basket neurons. J Comp Neurol 147:523–546

    Google Scholar 

  • Rapaport DH, Wilson PD (1983) Retinal ganglion cell size groups projecting to the superior colliculus and the dorsal lateral geniculate nucleus in the North American opossum. J Comp Neurol 213:74–85

    Google Scholar 

  • Rapaport DH, Wilson PD, Rowe MH (1981) The distribution of ganglion cells in the retina of the North American opossum. J Comp Neurol 199:465–480

    Google Scholar 

  • Reese BE (1987) The distribution of axons according to diameter in the optic nerve and optic tract of the rat. Neuroscience 22:1015–1024

    Google Scholar 

  • Reese BE, Colello RJ (1991) Neurogenesis in the retinal ganglion cell layer of the rat. Neuroscience 46:419–429

    Google Scholar 

  • Reese BE, Guillery RW, Marzi CA, Tassinari G (1991) Position of axons in the cat's optic tract in relation to their retinal origin and chiasmatic pathway. J Comp Neurol 306:539–553

    Google Scholar 

  • Robinson SR, Dreher B (1990) The visual pathways of eutherian mammals and marsupials develop according to a common timetable. Brain Behav Evol 36:177–195

    Google Scholar 

  • Romer AS (1936) Vertebrate Paleontology, Univ Chicago Press, Chicago, Illinois, 491 pp

    Google Scholar 

  • Sengelaub DR, Dolan RP, Finlay BL (1986) Cell generation, death and retinal growth in the development of the hamster retinal ganglion cell layer. J Comp Neurol 246:527–543

    Google Scholar 

  • Sidman RL (1961) Histogenesis of mouse retina studied with thymidine-H3. In: Smelser G (ed) The structure of the eye, Academic Press, New York, pp 487–506

    Google Scholar 

  • Stone J, Leicester J, Sherman SM (1973) The naso-temporal division of the monkey's retina. J Comp Neurol 150:377–394

    Google Scholar 

  • Vaney DI, Peichl L, Boycott BB (1981) Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. J Comp Neurol 199:373–391

    Google Scholar 

  • Volchan E, Bernardes RF, Rocha-Miranda CE, Gleiser L, Gawryszewski LG (1988) The ipsilateral field representation in the striate cortex of the opossum. Exp Brain Res 73:297–304

    Google Scholar 

  • Walls GL (1939) Notes on the retinae of two opossum genera. J Morphol 64:67–87

    Google Scholar 

  • Walsh C, Guillery RW (1985) Age-related fiber order in the optic tract of the ferret. J Neurosci 5:3061–3069

    Google Scholar 

  • Walsh C, Polley EH (1985) The topography of ganglion cell production in the cat's retina. J Neurosci 5:741–750

    Google Scholar 

  • Walsh C, Polley EH, Hickey TL, Guillery RW (1983) Generation of cat retinal ganglion cells in relation to central pathways. Nature 302:611–614

    Google Scholar 

  • Wässle H, Boycott BB, Illing RB (1981) Morphology and mosaic of on-and off-beta cells in the cat retina and some functional implications. Proc R Soc Lond [Biol] 212:177–195

    Google Scholar 

  • Wikler KC, Perez G, Finlay BL (1989) Duration of retinogenesis: its relationship to retinal organization in two cricetine rodents. J Comp Neurol 285:157–176

    Google Scholar 

  • Wilson PD, Condo GJ (1985) Beta-like ganglion cells in the retina of the North American opossum. Brain Res 331:155–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allodi, S., Cavalcante, L.A., Hokoç, J.N. et al. Genesis of neurons of the retinal ganglion cell layer in the opossum. Anat Embryol 185, 489–499 (1992). https://doi.org/10.1007/BF00174086

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174086

Key words

Navigation