Skip to main content
Log in

Supercoiling and map stability in the bacterial chromosome

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A major goal of comparative genomics is an understanding of the forces which control gene order. This assumes that gene order is important, a supposition backed by the existence of genomic colinearity between many related species. In the bacterial chromosome, a polarity in the order of genes has been suggested, influenced by distance and orientation relative to the origin of DNA replication. We propose a model of the bacterial chromosome in which gene order is maintained by the adaptation of gene expression to local superhelical context. This force acts not directly at the genomic level but rather at the local gene level. A full understanding of gene-order conservation must therefore come from the bottom up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold GF, Tessman I (1988) Regulation of DNA superhelicity by rpoB mutations that suppress defective rho-mediated transcription termination in Escherichia coli. J Bacteriol 170:4266–4271

    Google Scholar 

  • Bagga R, Ramesh N, Brahmachari SK (1990) Supercoil-induced unusual DNA structures as transcriptional block. Nucleic Acids Res 18:3363–3369

    Google Scholar 

  • Balke VL, Gralla JD (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 169:4499–4506

    CAS  PubMed  Google Scholar 

  • Beckwith JR, Signer ER, Epstein W (1966) Transposition of the Lac region of E. coli. Cold Spring Harbor Symp Quant Biol 31:393–401

    Google Scholar 

  • Birkenbihl RP, Vielmetter W (1989) Complete maps of IS1, IS2, IS3, IS4, IS5, IS30 and IS150 locations in Escherichia coli K12. Mol Gen Genet 220:147–153

    Google Scholar 

  • Biserčić M, Ochman H (1993a) Natural populations of Escherichia coli and Salmonella typhimurium harbor the same classes of insertion sequences. Genetics 133:449–454

    Google Scholar 

  • Biserčić M, Ochman H (1993b) The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium. J Bacteriol 175:7863–7868

    Google Scholar 

  • Bliska JB, Cozzarelli NR (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J Mol Biol 194:205–218

    Google Scholar 

  • Borowiec JA, Gralla JD (1987) All three elements of the lac ps promoter mediate its transcriptional response to DNA supercoiling. J Mol Biol 195:89–97

    Google Scholar 

  • Borowiec JA, Zhang L, Sasse-Dwight S, Gralla JD (1987) DNA supercoiling promotes formation of a bent repression loop in lac DNA. J Mol Biol 196:101–111

    Google Scholar 

  • Brewer BJ (1988) When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53:679–686

    Google Scholar 

  • Brewer BJ (1990) Replication and the transcriptional organization of the Escherichia coli chromosome. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 61–83

    Google Scholar 

  • Broyles SS, Pettijohn DE (1986) Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol 187:47–60

    Google Scholar 

  • Bukanov NO, Berg DE (1994) Ordered cosmid library and high-resolution physical-genetic map of Helicobacter pylori strain NCTC11638. Mol Microbiol 11:509–523

    Google Scholar 

  • Burland V, Plunkett G, Daniels DL, Blattner FR (1993) DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics 16:551–561

    Google Scholar 

  • Carlson CR, Grønstad A, Kolsttø A-B (1992) Physical maps of the genomes of three Bacillus cereus strains. J Bacteriol 174:3750–3756

    Google Scholar 

  • Chen D, Bowater R, Dorman CJ, Lilley DMJ (1992) Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci USA 89:8784–8788

    Google Scholar 

  • Chuang S-E, Daniels DL, Blattner FR (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol 175:2026–2036

    Google Scholar 

  • Condemine G, Smith CL (1990) Transcription regulates oxolinic acid-induced DNA gyrase cleavage at specific sites on the E. coli chromosome. Nucleic Acids Res 18:7389–7396

    Google Scholar 

  • DiNardo S, Voelkel KA, Sternglanz R (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:43–51

    Google Scholar 

  • Drlica K (1984) Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev 48:273–289

    Google Scholar 

  • Drlica K (1987) The nucleoid. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, DC, pp 91–103

    Google Scholar 

  • Drlica K, Pruss GJ, Burger RM, Franco RJ, Hsieh L-S, Berger BA (1990) Roles of DNA topoisomerases in bacterial chromosome structure and function. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 195–204

    Google Scholar 

  • Dybvig K (1993) DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol 10:465–471

    Google Scholar 

  • Figueroa N, Bossi L (1988) Transcription induces gyration of the DNA template in Escherichia coli. Proc Natl Acad Sci USA 85:9416–9420

    Google Scholar 

  • Figueroa N, Wills N, Bossi L (1991) Common sequence determinants of the response of a prokaryotic promoter to DNA bending and supercoiling. EMBO J 10:941–949

    Google Scholar 

  • François V, Louarn J, Rebollo J-E, Louarn J-M (1990) Replication termination, nondivisible zones, and structure of the Escherichia coli chromosome. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 351–359

    Google Scholar 

  • Fujita MQ, Yoshikawa H, Ogasawara N (1989) Structure of the dnaA region of Pseudomonas putida: conservation among three bacteria, Bacillus subtilis, Escherichia coli and P. putida. Mol Gen Genet 215:381–387

    Google Scholar 

  • Goldstein E, Drlica K (1984) Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci USA 81:4046–4050

    Google Scholar 

  • Grau R, Gardiol D, Glikin GC, de Mendoza D (1994) DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol Microbiol 11:933–941

    Google Scholar 

  • Groisman EA, Saier MH Jr, Ochman H (1992) Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 11:1309–1316

    Google Scholar 

  • Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569–584

    Google Scholar 

  • Higgins NP, Collier DA, Kilpatrick MW, Krause HM (1989) Supercoiling and integration host factor change the DNA conformation and alter the flow of convergent transcription in phage Mu. J Biol Chem 264:3035–3042

    Google Scholar 

  • Higgins CF, Dorman CJ, Ni Bhriain N (1990) Environmental influences on DNA supercoiling: a novel mechanism for the regulation of gene expression. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 421–432

    Google Scholar 

  • Hill CW, Gray JA (1988) Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119:771–778

    Google Scholar 

  • Hill CW, Harnish BW (1981) Inversions between ribosomal RNA genes of Escherichia coli. Proc Nall Acad Sci USA 78:7069–7072

    Google Scholar 

  • Hill CW, Harnish BW (1982) Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli. J Bacteriol 149:449–457

    Google Scholar 

  • Holloway BW, Dharmsthiti S, Krishnapillai V, Morgan A, Obeyesekere V, Ratnaningsih E, Sinclair M, Strom D, Zhang C (1990) Patterns of gene linkages in Pseudomonas species. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 97–105

    Google Scholar 

  • Horwitz MSZ (1989) Transcription regulation in vitro by an E. coli promoter containing a DNA cruciform in the ‘−35’ region. Nucleic Acids Res 17:5537–5545

    Google Scholar 

  • Hsieh L-S, Burger RM, Drlica K (1991) Bacterial DNA supercoiling and [ATP]/[ADP] changes associated with a transition to anaerobic growth. J Mol Biol 219:443–450

    Google Scholar 

  • Hulton CSJ, Seirafi A, Hinton JCD, Sidebotham JM, Waddell L, Pavitt GD, Owen-Hughes T, Spassky A, Buc H, Higgins CF (1990) Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell 63:631–642

    Google Scholar 

  • Jaworski A, Higgins NP, Wells RD, Zacharias W (1991) Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. J Biol Chem 266:2576–2581

    Google Scholar 

  • Jovanovich SB, Lebowitz J (1987) Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions. J Bacteriol 169:4431–4435

    Google Scholar 

  • Karem K, Foster JW (1993) The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol 10:75–86

    Google Scholar 

  • Koo H-S, Wu H-Y, Liu LF (1990) Effects of transcription and translation on gyrase-mediated DNA cleavage in Escherichia coli. J Biol Chem 265:12300–12305

    Google Scholar 

  • Krawiec S (1985) Concept of a bacterial species. Int J Syst Bacteriol 35:217–220

    Google Scholar 

  • Krawiec S, Riley M (1990) Organization of the bacterial chromosome. Microbiol Rev 54:502–539

    Google Scholar 

  • Krug PJ, Gileski AZ, Code RJ, Torjussen A, Schmid MB (1994) Endpoint bias in large Tn10-catalyzed inversions in Salmonella typhimurium. Genetics 136:747–756

    Google Scholar 

  • Ladefoged SA, Christiansen G (1992) Physical and genetic mapping of the genomes of five Mycoplasma hominis strains by pulsed-field gel electrophoresis. J Bacteriol 174:2199–2207

    Google Scholar 

  • Le Bourgeois P, Lautier M, Mata M, Ritzenthaler P (1992) Physical and genetic map of the chromosome of Lactococcus lactic subsp. lactis IL 1403. J Bacteriol 174:6752–6762

    Google Scholar 

  • Lilley DMJ, Higgins CF (1991) Local DNA topology and gene expression: the case of the leu-500 promoter. Mol Microbiol 5:779–783

    Google Scholar 

  • Liu B, Wong ML, Tinker RL, Geiduschek EP, Alberts BM (1993) The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature 366:33–39

    Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027

    Google Scholar 

  • Liu S-L, Hessel A, Cheng H-YM, Sanderson KE (1994) The XbaI-BlnI-CeuI genomic cleavage map of Salmonella paratyphi B. J Bacteriol 176:1014–1024

    Google Scholar 

  • Lodge JK, Kazic T, Berg DE (1989) Formation of supercoiling domains in plasmid pBR322. J Bacteriol 171:2181–2187

    Google Scholar 

  • Louarn JM, Bouché JP, Legendre F, Louarn J, Patte J (1985) Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis. Mol Gen Genet 201:467–476

    Google Scholar 

  • Lynch AS, Wang JC (1993) Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase. I. J Bacteriol 175:1645–1655

    Google Scholar 

  • Mahan MJ, Segall AM, Roth JR (1990) Recombination events that rearrange the chromosome: barriers to inversion. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 341–349

    Google Scholar 

  • Masters M, Moir PD, Spiegelberg R, Pringle JH, Vermeulen CW (1985) Is the chromosome of E. coli differentiated along its length with respect to gene density or accessibility to transcription? In: Schaechter M, Neidhardt F, Ingraham J, Kjelgaard N (eds) The molecular biology of bacterial growth. Jones & Bartlett, Boston, pp 335–343

    Google Scholar 

  • Menzel R, Gellert M (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105–113

    Google Scholar 

  • Menzel R, Gellert M (1987) Fusions of the Escherichia coli gyrA and gyrB control regions to the galactokinase gene are inducible by coumermycin treatment. J Bacteriol 169:1272–1278

    Google Scholar 

  • Milkman R, Bridges MM (1990) Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505–517

    Google Scholar 

  • Milkman R, Stoltzfus A (1988) Molecular evolution of the Escherichia coli chromosome. II. Clonal segments. Genetics 120:359–366

    Google Scholar 

  • Mishra RK, Chatterji D (1993) Mechanism of initiation of transcription by Escherichia coli RNA polymerase on supercoiled template. Mol Microbiol 8:507–515

    Google Scholar 

  • Naas T, Blot M, Fitch WM, Arber W (1994) Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136: 721–730

    Google Scholar 

  • Ni Bhriain N, Dorman CJ, Higgins CF (1989) An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Mol Microbiol 3:933–942

    Google Scholar 

  • O'Byme CP, Ni Bhriain N, Dorman CJ (1992) The DNA supercoiling-sensitive expression of the Salmonella typhimurium his operon requires the his attenuator and is modulated by anaerobiosis and by osmolarity. Mol Microbiol 6:2467–2476

    Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Google Scholar 

  • Oppenheim AB, Rudd KE, Mendelson I, Teff D (1993) Integration host factor binds to a unique class of complex repetitive extragenic DNA sequences in Escherichia coli. Mol Microbiol 10:113–122

    Google Scholar 

  • Ornston LN, Neidle EL, Houghton JE (1990) Gene rearrangements, a force for evolutionary change; DNA sequence arrangements, a source of genetic constancy. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 325–334

    Google Scholar 

  • Owen-Hughes TA, Pavitt GD, Santos DS, Sidebotham JM, Hulton CSJ, Hinton JCD, Higgins CF (1992) The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 71:255–265

    Google Scholar 

  • Painbéni E, Mouray E, Gottesman S, Rouvière-Yaniv J (1993) An imbalance of HU synthesis induces mucoidy in Escherichia coli. J Mol Biol 234:1021–1037

    Google Scholar 

  • Pettijohn DE (1988) Histone-like proteins and bacterial chromosome structure. J Biol Chem 263:12793–12796

    Google Scholar 

  • Pettijohn DE, Hodges-Garcia Y (1990) Role of HU protein in transitional DNA coiling. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 241–245

    Google Scholar 

  • Pettijohn DE, Pfenninger O (1980) Supercoils in prokaryotic DNA restrained in vivo. Proc Natl Acad Sci USA 77:1331–1335

    Google Scholar 

  • Pontiggia A, Negri A, Beltrame M, Bianchi ME (1993) Protein HU binds specifically to kinked DNA. Mol Microbiol 7:343–350

    Google Scholar 

  • Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523

    Google Scholar 

  • Pruss GJ, Manes SH, Drlica K (1982) Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31:35–42

    Google Scholar 

  • Pyle LE, Taylor T, Finch LR (1990) Genomic maps of some strains within the Mycoplasma mycoides cluster. J Bacteriol 172:7265–7268

    Google Scholar 

  • Rahmouni AR, Wells RD (1989) Stabilization of Z DNA in vivo by localized supercoiling. Science 246:358–363

    Google Scholar 

  • Rahmouni AR, Wells RD (1992) Direct evidence for the effect of transcription on local DNA supercoiling in vivo. J Mol Biol 223: 131–144

    Google Scholar 

  • Rebollo J-E, François V, Louarn J-M (1988) Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc Natl Acad Sci USA 85:9391–9395

    Google Scholar 

  • Richardson SMH, Higgins CF, Lilley DMJ (1984) The genetic control of DNA supercoiling in Salmonella typhimurium. EMBO J 3:1745–1752

    Google Scholar 

  • Richardson SMH, Higgins CF, Lilley DMJ (1988) DNA supercoiling and the leu-500 promoter mutation of Salmonella typhimurium. EMBO 17:1863–1869

    Google Scholar 

  • Riley M, Anilionis A (1978) Evolution of the bacterial genome. Annu Rev Microbiol 32:519–560

    Google Scholar 

  • Riley M, Krawiec S (1987) Genome organization. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington, DC, pp 967–981

    Google Scholar 

  • Riley M, Sanderson KE (1990) Comparative genetics of Escherichia coli and Salmonella typhimurium. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 85–95

    Google Scholar 

  • Rouvière-Yaniv J, Yaniv M, Germond J-E (1979) E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell 17:265–274

    Google Scholar 

  • Rouvière-Yaniv J, Bonnefoy E, Huisman O, Almeida A (1990) Regulation of HU protein synthesis in Escherichia coli. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 247–257

    Google Scholar 

  • Sankoff D, Cedergren R, Abel Y (1990) Genomic divergence through gene rearrangement. Methods Enzymol 183:428–439

    Google Scholar 

  • Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci USA 89: 6575–6579

    Google Scholar 

  • Sanzey B (1979) Modulation of gene expression by drugs affecting deoxyribonucleic acid gyrase. J Bacteriol 138:40–47

    Google Scholar 

  • Schmid MB, Roth JR (1983) Selection and endpoint distribution of bacterial inversion mutations. Genetics 105:539–557

    Google Scholar 

  • Schmid MB, Roth JR (1987) Gene location affects expression level in Salmonella typhimurium. J Bacteriol 169:2872–2875

    Google Scholar 

  • Segall AM, Roth JR (1989) Recombination between homologies in direct and inverse orientation in the chromosome of Salmonella: intervals which are nonpermissive for inversion formation.Genetics 122:737–747

    Google Scholar 

  • Segall A, Mahan MJ, Roth JR (1988) Rearrangement of the bacterial chromosome: forbidden inversions. Science 241:1314–1318

    Google Scholar 

  • Sharp PM (1991) Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium: codon usage, map position, and concerted evolution. J Mol Evol 33:23–33

    Google Scholar 

  • Sinden RR, Pettijohn DE (1981) Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc Natl Acad Sci USA 78:224–228

    Google Scholar 

  • Sorokin A, Zumstein E, Azevedo V, Ehrlich SD, Serror P (1993) The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mot Microbiol 10:385–395

    Google Scholar 

  • Spirito F, Figueroa-Bossi N, Bossi L (1994) The relative contributions of transcription and translation to plasmid DNA supercoiling in Salmonella typhimurium. Mol Microbiol 11:111–122

    Google Scholar 

  • Stoltzfus A, Leslie JF, Milkman R (1988) Molecular evolution of the Escherichia coli chromosome. I. Analysis of structure and natural variation in a previously uncharacterized region between trp and tonB. Genetics 120:345–358

    Google Scholar 

  • Tan J, Shu L, Wu H-Y (1994) Activation of the leu-500 promoter by adjacent transcription. J Bacteriol 176:1077–1086

    Google Scholar 

  • Taylor DE, Eaton M, Yan W, Chang N (1992) Genome maps of Campylobacter jejuni and Campylobacter coli. J Bacteriol 174: 2332–2337

    Google Scholar 

  • Thompson RJ, Davies JP, Lin G, Mosig G, (1990) Modulation of transcription by altered torsional stress, upstream silencers, and DNA-binding proteins. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 227–240

    Google Scholar 

  • Tsao Y-P, Wu H-Y, Liu LF (1989) Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 56:111–118

    Google Scholar 

  • Tse-Dinh Y-C (1985) Regulation of the Escherichia coli DNA topoisomerase I gene by DNA supercoiling. Nucleic Acids Res 13: 4751–4763

    Google Scholar 

  • Tupper AE, Owen-Hughes TA, Ussery DW, Santos DS, Ferguson DIP, Sidebotham JM, Hinton JCD, Higgins CF (1994) The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J 13:258–268

    Google Scholar 

  • Wang J-Y, Syvanen M (1992) DNA twist as a transcriptional sensor for environmental changes. Mol Microbiol 6:1861–1866

    Google Scholar 

  • Whitson PA, Hsieh W-T, Wells RD, Matthews KS (1987) Supercoiling facilitate lac operator-repressor-pseudooperator interactions. J Biol Chem 262:4943–4946

    Google Scholar 

  • Worcel A, Burgi E (1972) On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71:127–147

    Google Scholar 

  • Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440

    Google Scholar 

  • Yamamoto N, Droffner ML (1985)Mechanisms determining anaobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc Natl Acad Sci USA 82:2077–2081

    Google Scholar 

  • Yang C-F, DasSarma S (1990) Transcriptional induction of purple membrane and gas vesicle synthesis in the archaebacterium Halobacterium halobium is blocked by a DNA gyrase inhibitor. J Bacteriol 172:4118–4121

    Google Scholar 

  • Yang Y, Ames GF-L (1988) DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Natl Acad Sci USA 85:8850–8854

    Google Scholar 

  • Yang Y, Ames GF-L (1990) The family of repetitive extragenic palindromic sequences: interaction with DNA gyrase and histonelike protein HU. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 211–225

    Google Scholar 

  • Zeigler DR, Dean DH (1990) Orientation of genes in the Bacillus subtilis chromosome. Genetics 125:703–708

    Google Scholar 

  • Zuemer RL, Herrmann JL, Saint Girons I (1993) Comparison of genetic maps for two Leptospira interrogans serovars provides evidence for two chromosomes and intraspecies heterogeneity. J Bacteriol 175:5445–5451

    Google Scholar 

  • Zyskind JW (1990) Priming and growth rate regulation: questions conceming initiation of DNA replication in Escherichia coli. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington, DC, pp 269–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: R.L. Charlebois

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlebois, R.L., St. Jean, A. Supercoiling and map stability in the bacterial chromosome. J Mol Evol 41, 15–23 (1995). https://doi.org/10.1007/BF00174037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174037

Key words

Navigation