Skip to main content
Log in

On the outer ionosphere (and its transition into interplanetary space)

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Some properties of the outer ionosphere and its boundary region are discussed on the basis of recent experimental results.

The analysis of the new data has shown that the outer ionosphere, a plasma above the ionospheric main maximum, extends to a distance of 3 to 3.5 earth radii from the earth's surface, that is, up to the region of the so-called “knee”, detected and observed by means of whistlers. During periods of relatively weak magnetic storms, from time to time the electron concentration at this ionospheric boundary jumps downward by factors of 10 to 100, over a height range of only a few hundred kilometres. The inflow of charged particles into the ionosphere apparently takes place through the boundary region. Sometimes these particles are “swept” into it from the overlying regions.

There is a great number of names for the outer ionosphere. Some of these terms, for instance the “geocorona”, are not at all applicable to the outer ionosphere.

From the new experimental results it can be inferred that in a great part of the outer ionosphere there is no quasineutrality, that there are rather strong electric fields, and that the Maxwell ion distribution law of particle velocities breaks down. Therefore, to analyze the ionization balance one should know the particles' velocity distribution functions. Otherwise it would hardly be possible to solve the problem of the formation of the ionosphere.

It is shown that within the limits of uncertainty all experimental results are in good agreement and produce a single, comprehensive picture of the structure of the outer ionosphere. Only some data, deduced from measurements of particle streams by means of ion traps, are an exception. They contradict the numerous experimental results. This discrepancy is in particular due to the difficulties of determining the plasma concentration from current density measurements.

Some methods are discussed briefly. For instance, the analysis of low-frequency waves, in particular the so-called whistler and the low-frequency plasma radiation, represents a physically adequate and fruitful method for investigating the outer ionosphere.

For a theoretical analysis of the above-mentioned data, it is in some cases required to take into account the effect of kinetic “corrections” to the refraction coefficient, of cyclotron and Čerenkov attenuation and radiation, etc. Over the next few years this method will come to play a great part in the exploration of the outer ionosphere, interplanetary space, and planets.

Measurements of the energy spectra of “incoherent” back scattering of radio waves on the electron fluctuations will make another very interesting source for studying the outer ionosphere. This method is based on the interaction phenomena of radio waves with the plasma. Therefore, the scattering spectra are functions of the oscillating properties of the plasma. However, these data should be subjected to a thorough theoretical treatment on the basis of a complete theory of scattering.

Up till now a sufficiently complete probe theory has not been evolved due to essential theoretical difficulties. Often this does not allow one to interpret adequately the results of measurements and considerably limits the possibilities of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Storey, L. R. O.: 1953, Phil Trans. Roy. Soc. A.246.

  2. Allcok, G. Mack: 1958, J. Atmos. Terr. Phys. 14, 158.

    Google Scholar 

  3. Smith, R. L.: 1961, J. Geophys. Res. 66, 3710.

    Google Scholar 

  4. Storey, O.: 1958, Ann. de Géophysique 14, 144.

    Google Scholar 

  5. Carpenter, D. L.: 1962, J. Geophys. Res. 67, 1963; 68, 1675, 1966; 71, 693.

    Google Scholar 

  6. Angerami, J. J. and Carpenter, D.: 1965, Report on Equatorial Aeronomy, p. 311; 1966, J. Geophys. Res. 71, 711.

  7. Liemohn, H. B. and Scarf, F. L.: 1964, J. Geophys. Res. 69, 883.

    Google Scholar 

  8. Guthart, H.: 1965, Radio Science 69D, 1417.

    Google Scholar 

  9. Gurnett, D. A., Shawhan, S. D., Brice, N. M., and Smith, R. L.: 1965, J. Geophys. Res. 70, 1966; 71, 741.

    Google Scholar 

  10. Gringauz, K. I.: 1961, Isk.Sput.Zemli [Artificial Earth Satellites] 12, 105. (See also the Patent for Discovery 27, “Bulletin of devices...” 12, 1964.)

    Google Scholar 

  11. Bowles, K. L.: 1961, J. Res. Nat. Bur-Stand. 65, D.I.

  12. Farley, D. T. and Bowles, K. L.: 1964, NBS Report, 8489.

  13. Evans, J. V.: 1962, J. Geophys. Res. 67, 4914.

    Google Scholar 

  14. Serbu, G. P. and Maier, K.: 1965, NBS Report, 8824; 1964, Space Research 5, 564.

  15. Slysh, V. I.: 1965, Kosm. Issl. [Space Research] (in Russian) 3, 760.

    Google Scholar 

  16. Sagalyn, R. C. and Smiddy, M.: 1964, J. Geophys. Res. 69, 1809.

    Google Scholar 

  17. Sagalyn, R. C. and Smiddy, M.: 1965, Preprint.

  18. Al'pert, Ja. L. and Sinel'nikov, V, M.: 1965, Geomagn. i Aeron. 5, 209; 1966. Plan. Space Sci. 14, 313.

    Google Scholar 

  19. Misyura, V. A., Solodovnikov, G. K., and Migunov, V. M.: 1965, Kosm. Issl. 3, 595, 604.

    Google Scholar 

  20. Istomin, V. G.: 1965, Issl. Kosm. Prostranstva [Exploration of the Outer Space]. Publishing House Nauka, Moscow, p. 192.

    Google Scholar 

  21. Taylor, H. A., Brinton, H. G., and Smith, C. R.: 1965, Preprint, Goddard Space Flight Center; 1965, J. Geophys. Res. 70, 5769.

  22. Kurt, V. G.: 1965, Issl. Kosm. Prostranstva. Publishing House Nauka, Moscow, p. 576.

    Google Scholar 

  23. Mac Lure, J. P.: 1965, Equatorial Aeronomy, p. 170.

  24. Pineo, V. C., Hynek, D. P., and Millman, G. H.: 1963, J. Geophys. RES. 68, 9695.

    Google Scholar 

  25. Bowles, K. L.: 1963, Space Research, p. 253.

  26. Champion, K. C. W.: 1965, Air Force Surveys in Geophysics No. 164.

  27. Al'pert, Ja. L.: 1960, Rasprostraneniye Radiovoln i Ionosfera [Propagation of Radio Waves and Ionosphere]. Nauka Publishing House, Moscow; 1962, Consultants Bureau, USA.

    Google Scholar 

  28. Mikhajlova, G. A.: 1962, Geomagn. i Aeron. 2, 257; 1965, 5, 183, 179.

    Google Scholar 

  29. Al'pert, Ja. L., Mikhailova, G. A., and Fligel, D. S.: 1966, J. Atmos. Terr. Phys. (in print).

  30. Fligel, D. S.: 1962, Geomagn. i Aeron. 2, 886.

    Google Scholar 

  31. Smith, R. L. et al.: 1964, Nature 204, 274.

    Google Scholar 

  32. Shawhan, S. D.: 1966, J. Geophys. Res. 71, 29.

    Google Scholar 

  33. Shawhan, S. D. and Gurnett, D. A.: 1966, J. Geophys. Res. 71, 46.

    Google Scholar 

  34. Gurnett, D. A. and Shawhan, S. D.: 1966, J. Geophys. Res. 71, 741.

    Google Scholar 

  35. Brice, N. M. and Smith, R. L.: 1964, Nature 203, 926.

    Google Scholar 

  36. Belrose, J. S. and Barrington, R. F.: 1964, Nature 203, 926.

    Google Scholar 

  37. Gurnett, D. A. and O'Brien, B. J.: 1964, J. Geophys. Res. 69, 65.

    Google Scholar 

  38. Scarf, F. L., Crook, G. M., and Fredericks, R. W.: 1965, J. Geophys. Res. 70, 3045.

    Google Scholar 

  39. Gordon, W. E.: 1958, Proc. I.R.E., 1824.

  40. Bowles, K. L.: 1958, Phys. Rev. Letters 1, 454.

    Google Scholar 

  41. Fejer, J. A.: 1960, Canad. J. Phys. 38, 1114; 1961, 39, 716.

    Google Scholar 

  42. Farley, D. T., Dougherty, J. D., and Barron, D. W.: 1961, Proc. Roy. Soc. A.263, 238.

    Google Scholar 

  43. Akhiezer, A. N. et al.: 1964, Kollektivnye Kolebaniya Plazmy [Collective Oscillations of Plasma]. Atomisdat, USSR. (In Russian.)

    Google Scholar 

  44. Langmuir, I. and Mott-Smith, H. M.: 1924, General Electric Review 27, 449, 538, 616, 762, 810; 1926, Phys. Rev. 28, 727.

    Google Scholar 

  45. Hok, G., Spencer, N. W., and Dow, W. G.: 1953, J. Geophys. Res. 58, 235.

    Google Scholar 

  46. Al'pert, Ja. L., Gurevich, A. V., and Pitayevsky, L. P.: 1964, Isk. Sputniki v Razrezhennoj Plazme [Artificial Satellites in Rarefield Plasma]. Nauka Publishing House, Moscow; 1965, ‘Space Physics with Artificial Satellites’, Consultants Bureau, USA.

    Google Scholar 

  47. Al'pert, Ja. L.: 1965, Geomagn. i Aeronom. 5, 3; 1965, Space Sci. Rev. 4, 373.

    Google Scholar 

  48. Gurevich, A. V., Pariyskaya, L. V., and Pitayevsky, L. P.: 1966, Sovjet Phys. JETP 22, 449.

    Google Scholar 

  49. Al'pert, Ja. L.: 1953, Usp. Fiz. Nauk [Advances of Physical Sciences] 49, No. 1; 1951, Journal of Experimental and Theoretical Physics 21, 38.

  50. Ratcliffe, J. A.: 1957, Rep. Progr. Physics 19, 138.

    Google Scholar 

  51. Al'pert, Ja. L., Vitshas, L. N., and Sinel'nikov, V. M.: 1965, Geomagn. i Aeronom. 5, 649.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al'pert, J.L. On the outer ionosphere (and its transition into interplanetary space). Space Sci Rev 6, 419–451 (1967). https://doi.org/10.1007/BF00173702

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173702

Keywords

Navigation