Skip to main content

Advertisement

Log in

Gene therapy in pediatric oncology

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

An increased understanding of the molecular mechanisms of cancer and the ability to introduce exogenous genes into mammalian cells has led to the development of oncologic treatment strategies based upon gene transfer. Preclinical animal models have suggested a variety of approaches which are now being tested in pediatric trials. Studies using marker genes to trace cell origin have already generated important information regarding autologous bone marrow transplantation for pediatric cancers. A variety of therapeutic genes are also being clinically tested. Trials are underway to determine if introduction of immunostimulatory genes into cancer cells can be used to enhance host antitumor immunity. Treatment of primary brain tumors with insertion of drug sensitization genes is a promising new therapy that is also being clinically evaluated. Other strategies such as insertion of drug resistance genes into hematopoietic cells, anti-oncogene therapy, and tumor suppressor gene replacement are being tested in adults and may find use in pediatric cancer treatment. Although gene transfer offers promising new approaches for the therapy of pediatric cancer, many technical problems remain which limit efficacy and widespread use. Further basic research in the molecular biology of cancer and in vector development will be required to realize the full potential of gene therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mulligan RC: The basic science of gene therapy. Science 260:926–932, 1993.

    Google Scholar 

  2. Coffin JM: Retroviridae and their replication. In: Fields BN, Knipe DM (eds) Virology. Raven Press Ltd, New York, 1990, pp 1437–1489.

    Google Scholar 

  3. Miller AD: Retrovirus packaging cells. Hum Gene Ther 1:5–14, 1990.

    Google Scholar 

  4. Markowitz D, Goff S, Bank A: A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 62:1120–1124, 1988.

    Google Scholar 

  5. Markowitz D, Goff S, Bank A: Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167:400–406, 1988.

    Google Scholar 

  6. Miller AD, Buttimore C: Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production Mol Cell Biol 6:2895–2902, 1986.

    Google Scholar 

  7. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R, Bacher J, Zsebo KM, Nienhuis AW: Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176:1125–1135, 1992.

    Google Scholar 

  8. Vanin EF, Kaloss M, Broscius C, Nienhuis AW: Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J Virol 68:4241–4150, 1994.

    Google Scholar 

  9. Karlsson S: Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood 78:2481–2492, 1991.

    Google Scholar 

  10. Dick JE, Magli MC, Huszar D, Philips RA, Bernstein A: Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42:71–79, 1985.

    Google Scholar 

  11. Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M, Krance RA, Santana VM, Anderson WF, Ihle JN: Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342:1134–1137, 1993.

    Google Scholar 

  12. Dunbar CE, Cottler-Fox M, O'Shaughnessy JA, Doren S, Carter C, Berenson R, Brown S, Moen RC, Greenblatt J, Stewart FM, Leitman SF, Wilson WH, Cowan K, Young NS, Nienhuis AW: Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85:3048–3057, 1995.

    Google Scholar 

  13. Miller DG, Adam MA, Miller AD: Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242, 1990.

    Google Scholar 

  14. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK: Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and non-mammalian cells. Proc Natl Acad Sci USA 90:8033–8037, 1993.

    Google Scholar 

  15. Yang Y, Vanin EF, Whitt MA, Fornerod M, Zwart R, Schneiderman RD, Grosveld G, Nienhuis AW: Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum Gene Ther 6:1203–1213, 1995.

    Google Scholar 

  16. Berkner KL: Expression of heterologous sequences in adenoviral vectors. Curr Top Microbiol Immunol 158:39–66, 1992.

    Google Scholar 

  17. Graham FL, Prevac L: Manipulation of adenovirus vectors. In: Murray EJ (eds) Methods in Molecular Biology: Gene Transfer and Expression Protocols. The Humana Press, New Jersey, 1991, pp 109–128.

    Google Scholar 

  18. Rosenfeld MA, Siegfried W, Yoshimura K, Fukayama M, Stier LE, Paakko PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Jallat S, Pavirani A, Lecocq JP, Crystal RG: Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 252:431–434, 1991.

    Google Scholar 

  19. Jaffe HA, Danel C, Longenecker G, Metzger M, Setoguchi Y, Rosenfeld MA, Gant TW, Thorgeirsson SS, Stratford-Perricaudet LD, Perricaudet M, Pavirani A, Lecocq JP, Crystal RG: Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet 1:372–378, 1992.

    Google Scholar 

  20. Bajocchi G, Feldman SH, Crystal RG, Mastrangeli A: Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vectors. Nat Genet 3:229–234, 1993.

    Google Scholar 

  21. Mitani K, Graham FL, Caskey CT: Transduction of human bone marrow by adenoviral vector. Hum Gene Ther 5:941–948, 1994.

    Google Scholar 

  22. Brody SL, Crystal RG: Adenovirus-mediated in vivo gene transfer. In: Huber BE, Lazo JS (eds) Gene Therapy for Neoplastic Diseases. Ann NY Acad Sci 716, New York, 1994, pp 90–101.

    Google Scholar 

  23. Crystal RG: Gene therapy strategies for pulmonary disease. Am J Med 92:44S-52S, 1992.

    Google Scholar 

  24. Brody SL, Metzger M, Danel C, Rosenfeld MA, Crystal RG: Acute responses of non-human primates to airway delivery of an adenovirus vector containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum Gene Ther 5:821–836, 1994.

    Google Scholar 

  25. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM: Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407–4411, 1994.

    Google Scholar 

  26. Berns KI: Parvoviridae and their replication. In: Fields BN, Knipe DM (eds) Virology. Raven Press Ltd, New York, 1990, pp 1743–1764.

    Google Scholar 

  27. Carter BJ, Mendelson E, Trempe JP: AAV DNA replication, integration and genetics. In: Tjissen P (ed) Handbook of Parvoviruses. CRC Press, Florida, 1990, pp 169–226.

    Google Scholar 

  28. Salmulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA: Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950, 1991.

    Google Scholar 

  29. Kotin RM, Menninger JC, Ward DC, Berns KI: Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 10:831–834, 1991.

    Google Scholar 

  30. Berns KI, Cheung A, Ostrove J, Lewis M: Adeno-associated virus latent infection. In: Mahy BWJ, Minson AC, Darby GK (eds) Virus Persistence. Cambridge University Press, Cambridge, 1982, p. 249.

    Google Scholar 

  31. Hermonat PL, Muzyczka N: Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 81:6466–6470, 1984.

    Google Scholar 

  32. Tratschin JD, Miller IL, Smith MG, Carter BJ: Adenoassociated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol 5:3251–3260, 1985.

    Google Scholar 

  33. Carter BJ: Adeno-associated virus vectors. Curr Opin Biotechnol 3:533–539, 1992.

    Google Scholar 

  34. Kotin RM: Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 5:793–801, 1994.

    Google Scholar 

  35. Miller JL, Walsh CE, Ney PA, Samulski RJ, Nienhuis AW: Single-copy transduction and expression of human gamma-globin in K562 erythroleukemia cells using recombinant adeno-associated virus vectors: the effect of mutations in NF-E2 and GATA-1 binding motifs within the hypersensitivity site 2 enhancer. Blood 82:1900–1906, 1993.

    Google Scholar 

  36. Zhou SZ, Cooper S, Kang LY, Ruggieri L, Heimfeld S, Srivastava A, Broxmeyer HE: Adeno-associated virus 2-mediated high efficiency gene transfer in immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. J Exp Med 179:1867–1875, 1994.

    Google Scholar 

  37. Miller JL, Donaheu RE, Sellers SE, Samulski RJ, Young NS, Nienhuis AW: Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells. Proc Natl Acad Sci USA 91:10183–10187, 1994.

    Google Scholar 

  38. Walsh CE, Nienhuis AW, Samulski RJ, Brown MG, Miller JL, Young NS, Liu JM: Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant adeno-associated virus vector. J Clin Invest 94:1440–1448, 1994.

    Google Scholar 

  39. Vos JMH: Herpesviruses as genetic vectors. In: Vos JMH (ed) Viruses in Human Gene Therapy. Carolina Academic Press, North Carolina, 1995, pp 109–140.

    Google Scholar 

  40. Ho DY, Mocarski ES, Sapolsky RM: Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proc Natl Acad Sci USA 90:3655–3659, 1993.

    Google Scholar 

  41. Cox WI, Gettig RR, Paoletti E: Poxviruses as genetic vectors. In: Vos JMH (ed) Viruses in Human Gene Therapy. Carolina Academic Press, North Carolina, 1995, pp 141–178.

    Google Scholar 

  42. Cooney EL, McElrath MJ, Corey L, Hu SL, Collier AC, Arditti D, Hoffman M, Coombs RW, Smith GE, Greenberg PD: Enhanced immunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV envelope and boosting with gp160 protein. Proc Natl Acad Sci USA 90:1882–1886, 1993.

    Google Scholar 

  43. Lewis P, Hensel M, Emerman M: Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11:3053–3058, 1992.

    Google Scholar 

  44. Lewis PF, Emerman M: Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516, 1994.

    Google Scholar 

  45. Farhood H, Gao X, Son K, Yang Y, Lazo JS, Huang L, Barsoum J, Bottega R, Epand RM: Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. In: Huber BE, Lazo JS (eds) Gene Therapy for Neoplastic Diseases. Ann NY Acad Sci 716, New York, 1994, pp 23–35.

    Google Scholar 

  46. Nabel EG, Plautz G, Nabel GJ: Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249:1285–1288, 1990.

    Google Scholar 

  47. Lim CS, Chapman GD, Gammon RS, Muhlestein JB, Bauman RP, Stack RS, Swain JL: Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation 83:2007–2011, 1991.

    Google Scholar 

  48. Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ: Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci USA 90:4645–4649, 1993.

    Google Scholar 

  49. Zhu N, Liggitt D, Liu Y, Debs R: Systemic gene expression after intravenous DNA delivery into adult mice. Science 261:209–211, 1993.

    Google Scholar 

  50. Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, Huang L, Shu S, Gordon D, Chang AE: Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 90:11307–11311, 1993.

    Google Scholar 

  51. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL, Merino MJ, Culver K, Miller AD, Blaese RM, Anderson WF: Gene transfer into humans: immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Eng J Med 323:570–578, 1990.

    Google Scholar 

  52. Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J Jr, Anderson WF, Ihle JN: Gene marking to trace origin of relapse after autologous bone marrow transplantation. Lancet 341:85–86, 1993.

    Google Scholar 

  53. Rill DR, Santana VM, Roberts WM, Nilson T, Bowman LC, Krance RA, Heslop HE, Moen RC, Ihle JN, Brenner MK: Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84:380–383, 1994.

    Google Scholar 

  54. Heslop HE, Roskrow M: Gene transfer for the therapy of hematologic malignancy. Curr Opin Hematol 2: 417–422, 1995.

    Google Scholar 

  55. Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M, Krance RA, Santana VM, Anderson WF, Ihle JN: Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342:1134–1137, 1993.

    Google Scholar 

  56. Shapiro RS, McClain K, Frizzera G, Gajl-Peczalska KJ, Kersey JH, Blazar BR, Arthur DC, Patton DF, Greenberg JS, Burke B, Ramsay NKC, McGlave P, Filipovich AH: Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood 71:1234–1243, 1988.

    Google Scholar 

  57. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, Brenner MK, Heslop HE: Use of gene-modified virus specific T lymphocytes to control Epstein-Barr virus-related lymphoproliferation. Lancet 345:9–13, 1995.

    Google Scholar 

  58. Hwu P, Rosenberg SA: The genetic modification of T cells for cancer therapy: an overview of laboratory and clinical trials. Cancer Detect Prev 18:43–50, 1994.

    Google Scholar 

  59. Mizoguchi H, O'Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258:1795–1798, 1992.

    Google Scholar 

  60. Tepper RI, Pattengale PK, Leder P: Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503–512, 1989.

    Google Scholar 

  61. Tepper RI, Mulé JJ: Experimental and clinical studies of cytokine gene-modified tumor cells. Hum Gene Ther 5:153–164, 1994.

    Google Scholar 

  62. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colonystimulating factor stimulates potent, specific, and longlasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543, 1993.

    Google Scholar 

  63. Hock H, Dorsch M, Kunzendorf U, Uberla K, Qin Z, Diamantstein T, Blankenstein T: Vaccinations with tumor cells genetically engineered to produce different cytokines: effectivity not superior to a classical adjuvant. Cancer Res 53:714–716, 1993.

    Google Scholar 

  64. Brenner MK, Furman WL, Santana VM, Browman L, Meyer W: Phase I study of cytokine-gene modified autologous neuroblastoma cells for treatment of relapsed/refractory neuroblastoma. Hum Gene Ther 3:665–676, 1992.

    Google Scholar 

  65. Moolten FL: Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther 1:279–287, 1994.

    Google Scholar 

  66. Tiberghien P: Use of suicide genes in gene therapy. J Leukoc Biol 56:203–209, 1994.

    Google Scholar 

  67. Moolten FL: Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46:5276–5281, 1986.

    Google Scholar 

  68. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM: In vivo gene transfer with retroviral vectorproducer cells for treatment of experimental brain tumors. Science 256:1550–1552, 1992.

    Google Scholar 

  69. Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH: In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res 53:83–88, 1993.

    Google Scholar 

  70. Bi WL, Parysek LM, Warnick R, Stambrook PJ: In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther 4:725–731, 1993.

    Google Scholar 

  71. Freeman SM, Rajagopal R, Shastri M, Munshi A, Jensen AK, Marrogi AI: The role of cytokines in mediating the bystander effect using HSV-TK xenogeneic cells. Cancer Lett 92:167–174, 1995.

    Google Scholar 

  72. Blaese M, Blankenstein T, Brenner M, CohenHaguenauer O, Gansbacher B, Sorrentino B, Velu T, Stepney R: European School of Oncology Paper: Gene therapy for the medical oncologist. Eur J Cancer 31A:1531–1537, 1995.

    Google Scholar 

  73. Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis AW: Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257:99–103, 1992.

    Google Scholar 

  74. Zhao SC, Li MX, Banerjee D, Schweitzer BI, Mineishi S, Gilboa E, Bertino JR: Long-term protection of recipient mice from lethal doses of methotrexate by marrow infected with a double-copy vector retrovirus containing a mutant dihydrofolate reductase. Cancer Gene Ther 1:27–33, 1994.

    Google Scholar 

  75. Moritz T, Mackay W, Glassner BJ, Williams DA, Samson L: Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 55:2608–2614, 1995.

    Google Scholar 

  76. Lowe SW, Ruley HE, Jacks T, Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967, 1993.

    Google Scholar 

  77. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA: Induction of chemosensitivity in human lung cancer cells in vivo by adenovirusmediated transfer of the wild-type p53 gene. Cancer Res 54:2287–2291, 1994.

    Google Scholar 

  78. Jin X, Nguygen D, Zhang WW, Kyritsis AP, Roth JA: Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res 55:3250–3253, 1995.

    Google Scholar 

  79. Tseng BY, Brown KD: Antisense oligonucleotide technology in the development of cancer therapeutics. Cancer Gene Ther 1:65–71, 1994.

    Google Scholar 

  80. Georges RN, Mukhopadhyay T, Zhang Y, Yen N, Roth JA: Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense Kras construct. Cancer Res 53:1743–1746, 1993.

    Google Scholar 

  81. Anfossi G, Gewirtz AM, Calabretta B: An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 86:3379–3383, 1989.

    Google Scholar 

  82. Fearon ER, Pardoll DM, Itaya T, Golumbeck P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P: Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60:397–403, 1990.

    Google Scholar 

  83. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E: Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172:1217–1224, 1990.

    Google Scholar 

  84. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM: Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254:713–716, 1991.

    Google Scholar 

  85. Hock H, Dorsch M, Diamantstein T, Blankenstein T: Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 174:1291–1298, 1991.

    Google Scholar 

  86. Jicha DL, Mulé JJ, Rosenberg SA: Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med 174:1511–1515, 1991.

    Google Scholar 

  87. Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E: Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 50:7820–7825, 1990.

    Google Scholar 

  88. Hock H, Dorsch M, Kunzendorf U, Qin Z, Diamantstein T, Blankenstein T: Mechanisms of rejection induced by tumor cell-targeted gene transfer of interleukin 2, interleukin 4, interleukin 7 tumor necrosis factor or interferon γ. Proc Natl Acad Sci USA 90:2774–2778, 1993.

    Google Scholar 

  89. Blankenstein T, Qin Z, Uberla K, Muller W, Rosen H, Volk HD, Diamantstein T: Tumor suppression after tumor cell-targeted tumor necrosis factor a gene transfer. J Exp Med 173:1047–1052, 1991.

    Google Scholar 

  90. Teng MN, Park BH, Koeppen HK, Tracey KJ, Fendly BM, Schreiber H: Long-term inhibition of tumor growth by tumor necrosis factor in the absence of cachexia or T-cell immunity. Proc Natl Acad Sci USA 88:3535–3539, 1991.

    Google Scholar 

  91. Colombo MP, Ferrari G, Stoppacciaro A, Parenza M, Rodolfo M, Mavilio F, Parmiani G: Granulocyte colonystimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 173:889–897, 1991.

    Google Scholar 

  92. Stoppacciaro A, Melani C, Parenza M, Mastracchio A, Bassi C, Baroni C, Parmiani G, Colombo MP: Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon-γ. J Exp Med 178:151–161, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address for offprints: Brian P. Sorrentino, Division of Experimental Hematology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benaim, E., Sorrentino, B.P. Gene therapy in pediatric oncology. Invest New Drugs 14, 87–99 (1996). https://doi.org/10.1007/BF00173685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173685

Key words

Navigation