Advertisement

Journal of Paleolimnology

, Volume 16, Issue 1, pp 1–21 | Cite as

Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile)

  • Blas L. Valero-Garcés
  • Martin Grosjean
  • Antje Schwalb
  • Mebus Geyh
  • Bruno Messerli
  • Kerry Kelts
Article

Abstract

Sedimentological, mineralogical and geochemical analyses of sediment cores from 9 m-deep, saline Laguna Miscanti, Chile (23 ° 44′S, 67 °46′W, 4140 m a.s.l.) together with high-resolution seismic profiles provide a mid to late Holocene time series of regional environmental change in the Atacama Altiplano constrained by 210Pb and conventional 14C dating. The mid Holocene was the most arid interval since the last glacial maximum, as documented by subaerial exposure and formation of hardgrounds on a playa surface. Extremely low lake levels during the mid Holocene appear consistent with lower effective moisture recorded at other sites along the Altiplano and in the Amazon Basin. Termination of this arid period represented a major shift in the regional environmental dynamics and inaugurated modern atmospheric conditions. The cores show a progressive upward increase in effective moisture interrupted by numerous century-scale drier periods of various intensities and durations that characterize a fluctuating late Holocene climate. In spite of chronological uncertainties, the major environmental changes seem to correlate with the available paleorecords from the region providing a coherent account of effective moisture variability in the tropical highlands of South America.

Key words

Atacama Holocene limnogeology South America paleoclimatology lake sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceituno, P., 1988. On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Monthly Weather Review 116: 505–524.Google Scholar
  2. Aravena, R., H. Peña, A. Grilli, O. Suzuki & M. Mordeckai, 1989. Evolución isotópica de las lluvias y origen de las masas de aire en el Altiplano chileno. IAEA-TECDOC-502, Isotope Hydrology Investigations in Latin America: 129–142.Google Scholar
  3. Bowler, J. M. & J. T. Teller, 1986. Quaternary evaporites and hydrological changes, Lake Tyrrel, northwest Victoria. Austr. J. Earth Sci. 33: 43–63.Google Scholar
  4. Bradbury, J. P., W. E. Dean & R. Y. Anderson, 1993. Holocene climatic and limnologic history of the north-central United States as recorded in the varved sediments of Elk Lake, Minnesota: a synthesis. In: J. P. Bradbury & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for rapid change in the north-central United States. Boulder Colorado, Geol. Soc. Am., Special paper 276: 309–328.Google Scholar
  5. Chivas, A. R., P. De Deckker, J. Cali, A. Chapman, E. Kiss & J. Shelley, 1993. Coupled stable isotope and trace element measurements of lacustrine carbonates as paleoclimatic indicators. In: P. Swart, K. Lohamnn, J. Mckenzie & S. Savin (eds), Climate change in continental isotopic records. Geophys. Monograph 78: 113–122.Google Scholar
  6. Chong Díaz G., 1988. The Cenozoic saline deposits of the Chilean Andes between 18 ° 00′ and 27 ° 00′ south latitude. In: H. Bahlburg, Ch. Breitkreuz & P. Giese (eds), The Southern Central Andes. Lecture Notes in Earth Sci. 17: 1–17.Google Scholar
  7. Coltinari, L., 1993. Global Quaternary Changes in South America. —J. Global-and-Planetary-Change 7: 11–23.Google Scholar
  8. Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.Google Scholar
  9. Enfield, D., 1992. Historical and prehistorical overview of El Niño/Southern Oscillation. In: H. Diaz & V. Markgraf (eds), El Niño, historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University Press: 95–118.Google Scholar
  10. Engstrom, D. & S. R. Nelson, 1991. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA. Palaeogeogr., Palaeoclim., Palaeoecol. 83: 295–312.Google Scholar
  11. Fontes, J. Ch., F. Gasse, Y. Callot, J.-C. Plaziat, P. Carbonell, P. A. Dupeuble & I. Kaczmarska, 1985. Freshwater to marine-like environments from Holocene lakes in northern Sahara. Nature 317: 608–610.Google Scholar
  12. Fritz, P., A. V. Morgan, U. Eicher & J. H. McAndrews, 1987. Stable isotope, fossil Coleoptera and pollen stratigraphy in Late Quaternary sediments from Ontario and New York State. Palaeogeogr., Palaeoclim., Palaeoecol. 58: 183–202.Google Scholar
  13. Fuenzalida, H. & J. Rutllant, 1986. Estudio sobre el origen del vapor de agua que precipita en el invierno altiplánico. Informe final, Universidad de Chile, 51 pp.Google Scholar
  14. Gasse, F. & J.-C. Fontes, 1989. Palaeoenvironments and palaeohydrology of a tropical closed lake (Lake Asal, Djibouti) since 10 000 yr B.P. Palaeogeogr., Palaeoclim., Palaeoecol. 69: 67–102.Google Scholar
  15. Goldsmith, J. R. & D. L. Graf, 1958. Relation between lattice constants and composition of the Ca−Mg carbonates. Am. Mineralogist 43: 84–101.Google Scholar
  16. Grosjean, M., 1994. Paleohydrology of the Laguna Lejia (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeogr., Palaeoclim., Palaeoecol. 109: 89–100.Google Scholar
  17. Grosjean, M. & L. Nuñez, 1994. Lateglacial, Early and Middle Holocene Environments, Human Occupation and Resource Use in the Atacama (Northern Chile). Geoarchaeology 9: 271–286.Google Scholar
  18. Grosjean, M., M. Geyh, B. Messerli & U. Schotterer, in press. Late glacial and early Holocene lake sediments, groundwater formation and climate in the Atacama Altiplano 22–24 °S. J. Paleolimnol.Google Scholar
  19. Hansen, B. C. S., H. E. Wright & J. P. Bradbury, 1984. Pollen studies in the Junin area, central Peruvian Andes. Geol. Soc. Am. Bull. 95: 1454–1465.Google Scholar
  20. Hansen, B. C. S., G. O. Seltzer & H. E. Wright, 1994. Late-Quaternary Vegetation Change in the Central Peruvian Andes. Palaeogeogr., Palaeoclimatol., Palaeoecol. 109: 263–285.Google Scholar
  21. Johnson, T. C., J. D. Halfman & W. J. Showers, 1991. Paleoclimate of the past 4000 years at Lake Turkana, Kenya, based on the isotopic composition of authigenic calcite. Palaeogeogr., Palaeoclim., Palaeoecol. 85: 189–198.Google Scholar
  22. Kelts, K. & M. Talbot, 1990. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions. In: M. M. Tilzer & C. Serruya (eds), Large Lakes, Ecological Structure and Function: 288–315.Google Scholar
  23. Kelts, K. & M. Shahrabi, 1986. Holocene sedimentology of hypersaline lake Urmia, northwestern Iran. Palaeogeogr. Palaeoclim., Palaeoecol. 54: 105–130.Google Scholar
  24. Kessler, A., 1990. Das El Niño-Phanomen und der Titicacaseespiegel. Mainzer Geographische Studien 34: 91–100.Google Scholar
  25. Last, W., 1994. Paleohydrology of playas i the Northern Great Plains: Perspectives from Palliser's triangle: In: Rosen M. (ed) Paleoclimate and Basin evolution of playa systems. Special paper GSA 289: 69–80.Google Scholar
  26. Lorius, C. & H. Oeschger, 1994. Paleo-perspectives: Reducing uncertainties in Global Change. Ambio 23/1: 30–36.Google Scholar
  27. Markgraf, V., J. R. Dodson, A. P. Kershaw, M. S. Mcglone & N. Nicholls, 1991. Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Clim. Dynamics 6: 193–211.Google Scholar
  28. Markgraf, V., 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr., Palaeoclim., Palaeoecol. 102: 53–68.Google Scholar
  29. Martin, L., M. Fournier, P. Mourguiart, A. Sifeddine, B. Turcq, M. L. Absy & J. M. Flexor, 1993. Southern Oscillation Signal in South American Palaeoclimatic Data of the Last 7000 Years. Quat. Res. 39: 338–346.Google Scholar
  30. McGlone, M., A. P. Kershaw & V. Markgraf, 1992. El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. In: H. Diaz & V. Markgraf (eds), El Niño, historical and paleoclimatic aspects of the southern oscillation. Cambridge University Press: 435–462.Google Scholar
  31. Messerli, B., M. Grosjean, G. Bonani, A. Bürgi, M. Geyh, K. Graf, K. Ramseyer, H. Romero, U. Schotterer, H. Schreier & M. Vuille, 1993. Climate change and natural resource dynamics of the Atacama Altiplano during the last 18 000 years: a preliminar synthesis. Mountain Res. Developm. 13: 117–127.Google Scholar
  32. Messerli, B., C. Ammann, M. A. Geyh, M. Grosjean, B. Jenny, K. Kammer & M. Vuille, in press. The problem of the ‘Andean Dry Diagonal’: current precipitation, late Pleistocene snow line and lake level changes in the Atacama Altiplano 18°S–28/29°S. Bamb. Geographische Schriften.Google Scholar
  33. Miller, A., 1976. The climate of Chile. In: SchwerdtfegerW. (ed.). Climates of Central and South America, World Survey of Climatology, v. 12: 113–146. Elsevier, Amsterdam.Google Scholar
  34. Mourguiart, P., D. Wirrmann, M. Fournier & M Servant, 1992. Reconstruction quantitative des niveaux du petit lac Titicaca au cours de l'Holocène. C. R. Acad. Sci. Paris 315: 875–880.Google Scholar
  35. Müller, G., G. Irion & U. Forstner, 1972. Formation and diagenesis of inorganic Ca−Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.Google Scholar
  36. Müller, G. & F. Wagner, 1978. Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. In: A. Matter & M. Tucker (eds) Modern and ancient lake sediments. IAS Sp. 2: 57–81.Google Scholar
  37. Nicholls, N., 1989. How old is ENSO?. Climate Change 14: 111–115.Google Scholar
  38. Nuñez, L. A., 1983. Paleoindian and Archaic Cultural Periods in the Arid and Semiarid Regions of Northern Chile. Advances in World Archaeol. 11: 161–201.Google Scholar
  39. Nuñez, L. A., 1994. The Western part of South America: Southern Peru, Bolivia, north-west Argentina and Chile during the Stone Age. In: S. J.De Laet (ed.), History of Humanity, Routledge, London, Vol. I: 348–362.Google Scholar
  40. Oomori, T., H. Kaneshima & Y. Maeizato, 1987. Distribution coefficient of Mg++ ions between calcite and solution at 10–50 °C. Mar. Chem. 20: 237–336.Google Scholar
  41. Pittock, A. B., 1980. Patterns of Climatic Variation in Argentina and Chile — I. Precipitation, 1931–60. Am. Meteorolog. Soc. 108: 1347–1369.Google Scholar
  42. Rainswell, R. & P. Brimblecombe, 1977. The partition of manganese into aragonite between 30 and 60 °C. Chem. Geol. 16: 641–644.Google Scholar
  43. Ramirez, C. & M. Gardeweg, 1982. Hoja Toconao. Serv. Nac. Geol. Miner., Carta Geol. Chile 54, 119 pp.Google Scholar
  44. Smoot, J. & T. Lowenstein, 1991. Depositional environments of non-marine evaporites. In: J. Melvin (ed.), Evaporites, petroleum and mineral resources. Elsevier, Amsterdam. Dev. Sed. 50: 189–348.Google Scholar
  45. Stine, S., 1994. Extreme and persistent drought in California and Patagonia during the medieval time. Nature 369: 546–549.Google Scholar
  46. Thompson, L. G., 1992. Ice core evidence from Peru and China. In: R. S. Bradley & P. Jones (eds), Climate since A.D. 1500, London, Routledge, Chapman and Hall: 517–548.Google Scholar
  47. Thompson, L. G., E. Mosley-Thompson & B. Morales Arnao, 1984. El Niño-Southern Oscillation events recorded in the stratigraphy of the tropical Quelccaya Ice cap, Peru. Science 226: 50–52.Google Scholar
  48. Thompson, L. G. & E. Mosley-Thompson, 1987. Evidence of abrupt climatic change during the last 1500 years recorded in ice cores from the tropical Quelccaya ice cap, Peru. In: W. H. Berger & L. D. Labeyrie (eds), Abrupt Climate Change, Evidence and Implications. Reidel Publishing Company. NATO ASI Series C 216: 99–110.Google Scholar
  49. Thompson, L. G. & E. Mosley-Thompson, 1989. One-half millenia of tropical climate variability as recorded in the stratigraphy of the Quelccaya ice cap, Peru. In: D. Peterson (ed.), Climate change in the Eastern Pacific and western Americas. Geophys. Am. Geophys. Un., Washington. Monogr. 55: 15–31.Google Scholar
  50. Thompson, L. G., E. Mosley-Thompson & P. Thompson, 1992. Reconstructing interannual climate variability from tropical and subtropical ice cores. In: H. Diaz V. Markgraf (eds), El Niño, historical and paleoclimatic aspects of the southern oscillation. Cambridge University Press: 295–322.Google Scholar
  51. Veizer, J., 1983. Trace elements and isotopes in carbonate minerals. Mineral Soc. Am. Rev. 11: 265–299.Google Scholar
  52. Villagrán, C. & J. Varela, 1990. Palynological evidence for Increased Aridity on the Central Chilean Coast during the Holocene. Quat. Res. 34: 198–207.Google Scholar
  53. Vuille, M. & M. F. Baumgartner, 1993. Hydrologic Investigations in the North Chilean Altiplano Using Landsat — MSS and — TM Data. Geocarto Intern. 3: 35–45.Google Scholar
  54. Warren, J. K., 1982. The hydrologic setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology 29: 609–637.Google Scholar
  55. Wright, H. E., J. E. Kutzbach, T. WebbIII, W. F. Ruddiman, F. A. Street-Perrot & P. J. Bartlein (eds). 1993. Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, 569 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Blas L. Valero-Garcés
    • 1
  • Martin Grosjean
    • 2
  • Antje Schwalb
    • 1
  • Mebus Geyh
    • 3
  • Bruno Messerli
    • 2
  • Kerry Kelts
    • 1
  1. 1.Limnological Research CenterUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Physical GeographyUniversity of BernBernSwitzerland
  3. 3.State Geological Survey, Lower SaxonyHannover 51Germany

Personalised recommendations