Skip to main content
Log in

Molecular evolution of group II phospholipases A2

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The nucleotide sequences of 13 cDNAs encoding group II phospholipases A2 (PLA2 S), which are from viperidae snake venoms and from mammalian sources, were aligned and analyzed by phylogenetic trees constructed using various components of the sequences. The evolutionary trees derived from the combined sequences of the untranslated (5′ and 3′) region and the signal peptide region of cDNAs were in accord with the consequences from taxonomy. In contrast, the evolutionary trees from the mature protein-coding region sequences of cDNAs and from the amino acid sequences showed random patterns. These observations indicated that the mature protein-coding region has evolved through a process differently from the untranslated and signal peptide regions. The trees built from the nucleotide differences at each of three positions of codons in the mature protein-coding region suggested that snakevenom-gland PLA2 genes have evolved via a process different from mammalian PLA2 genes. The occurrence of accelerated evolution has been recently discovered in Trimeresurus flavoviridis venom-gland group II PLA2 isozyme genes (Nakashima et al. 1993, Proc Natl Acad Sci USA 90:5964–5968), so the present phylogenetic analysis together with the estimation of nucleotide divergence of cDNAs provides further evidence that snakevenom-group II PLA2 isozyme genes have evolved by accelerated evolution to gain diverse physiological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boffa GA, Boffa MC, Winchenne JJ (1976) A phospholipase A2 with anticoagulant activity. I. Isolation from Vipera berus venom and properties. Biocim Biophys Acta 429:828–838

    Google Scholar 

  • Bouchier C, Boulain J-C, Bon C, Ménez A (1991) Analysis of cDNAs encoding the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattlesnake venom: the acidic non enzymatic subunit derives from a phospholipase A2-like precursor. Biochim Biophys Acta 1088:401–408

    Google Scholar 

  • Davidson FF, Dennis EA (1990) Evolutionary relationships and implication for the regulation of phospholipases A2 from snake venom to human secreted forms. J Mol Evol 31:228–238

    Google Scholar 

  • Dijkstra BW, Kalk KH, Hol WGJ, Drenth J (1981) Structure of bovine pancreatic phospholipase A2 at 1.7 Å resolution. J Mol Biol 147: 97–123

    Google Scholar 

  • Dijkstra BW, Renetseder R, Kalk KH, Hol WGJ, Drenth J (1983) Structure of porcine pancreatic phospholipase A2 at 2.6 Å resolution and comparison with bovine phospholipase A2. J Mol Biol 168:163–179

    Google Scholar 

  • Dufton MJ, Hider RC (1983) Classification of phospholipases A2 according to sequence. Evolutionary and pharmacological implications. Eur J Biochem 137:545–551

    Google Scholar 

  • Felsenstein J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fletcher JE, Rapuano BE, Condrea E, Yang C-C, Rosenberg P (1981) Relationship between catalysis and toxicological properties of three phospholipases A2 from elapid snake venoms. Toxicol Appl Pharmacol 59:375–388

    Google Scholar 

  • Francis B, Gutierrez JM, Lomonte B, Kaizer II (1991) Myotoxin II from Bothrops asper (Terciopelo) venom is a lysine-49 phospholipase A2. Arch Biochem Biophys 284:352–359

    Google Scholar 

  • Gojobori T, Ishii K, Nei M (1982) Estimations of average number of nucleotide substitutions when the rate of substitution varies with nucleotide. J Mol Evol 18:414–423

    Google Scholar 

  • Gutierrez JM, Lomonte MB, Cerdas L (1986) Isolation and partial characterization of a myotoxin from the venom of the snake Bothrops nummifer. Toxicon 24:885–894

    Google Scholar 

  • Halpert J, Eaker D, Karlsson E (1976) The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). FEBS lett 61: 72–76

    Google Scholar 

  • Higgins DG, Fuches R, Bleasby A (1992) CLUSTAL V: a new multiple sequence alignment program. Comput Appl Biosci 8:189–191

    CAS  PubMed  Google Scholar 

  • Ishizaki J, Ohara O, Nakamura E, Tamaki M, Ono T, Kanda A, Yoshida N, Teraoka H, Tojo H, Okamoto M (1989) cDNA cloning and sequence determination of rat membrane-associated phospholipase A2. Biochem Biophys Res Commun 162:1030–1036

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Google Scholar 

  • Kihara H, Uchikawa R, Hattori S, Ohno M (1992) Myotoxicity and physiological effects of three Trimeresurus flavoviridis phospholipases A2. Biochem Int 28:895–903

    Google Scholar 

  • Kimura M (1969) The rate of molecular evolution considered from the standpoint of population genetics. Proc Natl Acad Sci USA 63: 1181–1188

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge Univ Press, Cambridge, U.K.

    Google Scholar 

  • Kini RM, Kawabata S, Iwanaga S (1986) Comparison of amino terminal region of three isoenzymes of phospholipases A2 (TFV PL-Ia, TFV PL-Ib, TFV PL-X) from Trimeresurus flavoviridis (habu snake) venom and the complete amino acid sequences of the basic phospholipase, TFV PL-X. Toxicon 24:1117–1129

    Google Scholar 

  • Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB (1989) Structure and properties of a human nonpancreatic phospholipase A2. J Biol Chem 264:5768–5775

    Google Scholar 

  • Liu S-Y, Yoshizumi K, Oda N, Ohno M, Tokunaga F, Iwanaga S, Kihara H (1990) Purification and amino acid sequence of basic protein II, a lysine-49-phospholipase A2 with low activity, from Trimeresurus flavoviridis venom. J Biochem (Tokyo) 107:400–408

    Google Scholar 

  • Maraganore JM, Merutka G, Cho W, Welches W, Kézdy FJ, Heinrikson RL (1984) A new class of phospholipase A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding. J Biol Chem 259:13839–13843

    Google Scholar 

  • Maraganore JM, Heinrikson RL (1986) The lysine-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. Relation of structure and function to other phospholipases A2. J Biol Chem 261:4797–4804

    Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Google Scholar 

  • Nakashima K, Ogawa T, Oda N, Hattori M, Sakaki Y, Kihara H, Ohno M (1993) Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A2 isozymes. Proc Natl Acad Sci USA 90:5964–5968

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nei M, Jin L (1989) Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 6: 290–300

    Google Scholar 

  • Oda N, Ogawa T, Ohno M, Sasaki H, Sakaki Y, Kihara H (1990) Cloning and sequence analysis of cDNA for Trimeresurus flavoviridis phospholipase A2, and consequent revision of the amino acid sequence. J Biochem (Tokyo) 108:816–821

    Google Scholar 

  • Ogawa T, Oda N, Nakashima K, Sasaki H, Hattori M, Sakaki Y, Kihara H, Ohno M (1992) Unusually high conservation of untranslated sequences in cDNAs for Trimeresurus flavoviridis phospholipase A2 isozymes. Proc Natl Acad Sci USA 89:8557–8561

    Google Scholar 

  • Ohta T (1991) Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proc Natl Acad Sci USA 88:6716–6720

    Google Scholar 

  • Ohta T, Basten CJ (1992) Gene conversion generates hypervariability at the variable regions of kallikreins and their inhibitors. Mol Phyl Evol 1:87–90

    Google Scholar 

  • Ohta T (1993) Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc Natl Acad Sci USA 90:4548–4551

    Google Scholar 

  • Pungercar J, Kordis D, Strukelj B, Liang N-S, Gubensek F (1991) Cloning and nucleotide sequence of a cDNA encoding ammodytoxin A, the most toxic phospholipase A2 from the venom of longnosed viper (Vipera ammodytes). Toxicon 29:269–273

    Google Scholar 

  • Renetseder R, Brunie S, Dijkstra BW, Drenth J, Sigler PB (1985) A comparison of the crystal structures of phospholipases A2 from bovine pancreas and Crotalus atrox venom. J Biol Chem 260: 11627–11634

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Scott DL, Achari A, Vidal JC, Sigler PB (1992) Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. J Biol Chem 267: 22645–22657

    Google Scholar 

  • Seilhamer JJ, Pruzanski W, Vadas P, Plant S, Miller JA, Kloss J, Johnson LK (1989) Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem 264:5335–5338

    Google Scholar 

  • Tanaka S, Mohori N, Kihara H, Ohno M (1986) Amino acid sequence of Trimeresurus flavoviridis phospholipase A2. J Biochem (Tokyo) 99:281–289

    Google Scholar 

  • Vishwanath BS, Kini RM, Gowda TV (1987) Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 25:501–515

    Google Scholar 

  • Wery J-P, Schevitz RW, Clawson DK, Bobbitt JL, Dow ER, Gamboa G, Goodson T, Jr, Hermann RB, Kramer RM, McClure DB, Mihelich ED, Putnam LE, Sharp JD, Stark DH, Teater C, Warrick W, Jones ND (1991) Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2Å resolution. Nature 352:79–82

    Google Scholar 

  • Yoshizumi K, Liu S-Y, Miyata T, Saita S, Ohno M, Iwanaga S, Kihara H (1990) Purification and amino acid sequence of basic protein I, a lysine-49-phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (habu snake). Toxicon 28:43–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. Ohno

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, T., Kitajima, M., Nakashima, Ki. et al. Molecular evolution of group II phospholipases A2 . J Mol Evol 41, 867–877 (1995). https://doi.org/10.1007/BF00173166

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173166

Key words

Navigation