Skip to main content
Log in

Start-up and operation of a propionate-degrading fluidized-bed reactor

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

A laboratory-scale fluidized-bed reactor was inoculated with a syntrophically propionate-degrading co-culture. After 24 days of batch operation with propionate and acetate in the medium, the reactor was operated for 8 months with propionate as the sole substrate. The loading rate was 8.5 kg chemical oxygen demand/m3 ·day, yielding a maximal gas production of 4.5 l/l·day at a removal efficiency of 94–99%. The degradation was not inhibited by up to 85mm propionate in pulse experiments, but short-time changes in redox potential above — 300 mV led to a drop in the propionate degradation rate. While Methanocorpusculum sp. and Methanospirillum sp. adhered to the sand in the early phase of the start-up, the consortium in the mature biofilm consisted of Desulfobulbus sp., Methanothrix soehngenii and species of at least three different genera of hydrogenotrophic methanogens. A syntrophic relationship between the sulphate-reducing Desulfobulbus sp. and hydrogenotrophic and acetotrophic methanogens is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barredo MS, Evison LM (1991) Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl Environ Microbiol 57:1764–1769

    Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    Google Scholar 

  • Boone DR, Xun L (1987) Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appl Environ Microbiol 53:1589–1592

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    Google Scholar 

  • Chynoweth DP, Mah RA (1971) Volatile acid formation in sludge digestion. Adv Chem Ser 105:41–54

    Google Scholar 

  • Ferry JG, Smith PH, Wolfe RS (1974) Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24:465–469

    Google Scholar 

  • Fukuzaki S, Nishio N, Shobayashi M, Nagai S (1990) Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl Environ Microbiol 56:719–723

    Google Scholar 

  • Gorris LGM (1987) Analysis of methanogenic populations in anaerobic digesters. PhD thesis, University of Nijmegen, The Netherlands

    Google Scholar 

  • Gorris LGM, Deursen JMA van, Drift C van der, Vogels GD (1989a) Inhibition of propionate degradation by acetate in methanogenic fluidized bed reactors. Biotechnol Lett 11:61–66

    Google Scholar 

  • Gorris LGM, Deursen JMA van, Drift C van der, Vogels GD (1989b) Biofilm development in laboratory methanogenic fluidized bed reactors. Biotechnol Bioeng 33:687–693

    Google Scholar 

  • Guyot J-P, Brauman A (1986) Methane production from formate by syntrophic association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ. Appl Environ Microbiol 52:1436–1437

    Google Scholar 

  • Heyes RH, Hall RJ (1983) Kinetics of two subgroups of propionate-using organisms in anaerobic digestion. Appl Environ Microbiol 46:710–715

    Google Scholar 

  • Hobson PN, Bousfield S, Summers R (1974) Anaerobic digestion of organic matter. Crit Rev Environ Control 4:131–191

    Google Scholar 

  • Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274

    Google Scholar 

  • Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55

    Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen nov. spec. nov., a new acetotrophic nonhydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Jee HS, Nishio N, Nagai S (1987) Influence of redox potential on biomethanation of H2 and CO2 by Methanobacterium thermoautotrophicum in Eh-stat batch cultures. J Gen Appl Microbiol 33:401–408

    Google Scholar 

  • Jee HS, Mano T, Nishio N, Nagai S (1988) Influence of redox potential on methanation of methanol by Methanosarcina barkeri in Eh-stat batch culture. J Ferment Technol 66:123–126

    Google Scholar 

  • Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    Google Scholar 

  • Kjaergaard L (1977) The redox potential: its use and control in biotechnology. Adv Biochem Eng 7:131–150

    Google Scholar 

  • Koch M, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414

    Google Scholar 

  • Kremer DR, Hansen TA (1988) Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol Lett 49:273–277

    Google Scholar 

  • Lang E, Lang H (1972) Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z Anal Chem 260:8–10

    Google Scholar 

  • Mackie RI, Bryant MP (1981) Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate and CO2 to methanogenesis in cattle waste at 40 and 60° C. Appl Environ Microbiol 41:1363–1373

    Google Scholar 

  • McCarty PL (1971) Energetics and kinetics of anaerobic treatment. Adv Chem Ser 105:91–107

    Google Scholar 

  • McCarty PL, Smith DP (1986) Anaerobic wastewater treatment. Environ Sci Technol 20:1200–1206

    Google Scholar 

  • McInerney MJ, Bryant MP (1981) Anaerobic degradation of lactate by syntrophic association of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl Environ Microbiol 41:346–354

    Google Scholar 

  • Newport PJ, Nedwell DB (1988) The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. J Appl Bacteriol 65:419–423

    Google Scholar 

  • Sahm H (1984) Anaerobic waste water treatment. Adv Biochem Eng Biotechnol 29:83–115

    Google Scholar 

  • Samain E, Dubourguier HC, Albagnac G (1984) Isolation and characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst Appl Microbiol 5:391–401

    Google Scholar 

  • Schink B (1985) Mechanisms and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650

    Google Scholar 

  • Shapiro M, Switzenbaum MS (1984) Initial anaerobic biofilm development. Biotechnol Lett 6:729–734

    Google Scholar 

  • Smith DP, McCarty PL (1989a) Energetic and rate effects on methanogenesis of ethanol and propionate in perturbed CSTRs. Biotechnol Bioeng 34:39–54

    Google Scholar 

  • Smith DP, McCarty PL (1989b) Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnol Bioeng 34:885–895

    Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway pf propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Google Scholar 

  • Switzenbaum MS, Giraldo-Gomez E, Hickey RF (1990) Monitoring of the anaerobic methane fermentation process. Enzyme Microb Technol 12:722–730

    Google Scholar 

  • Tanimoto Y, Tasaki M, Okamura K, Yamaguchi M, Minami K (1989) Screening growth inhibitors of sulfate-reducing bacteria and their effects on methane fermentation. J Ferment Bioeng 68:353–359

    Google Scholar 

  • Tatton MJ, Archer DB, Powell GE, Parker ML (1989) Methanogenesis from ethanol by defined mixed continuous cultures. Appl Environ Microbiol 55:440–445

    Google Scholar 

  • Ten Brummeler E, HulshoffPol LW, Dolfing J, Lettinga G, Zehnder AJB (1985) Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Appl Environ Microbiol 49:1472–1477

    Google Scholar 

  • Terho TT, Hartiala K (1971) Method for determination of sulfate content of glycosaminoglycans. Anal Biochem 41:471–476

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Google Scholar 

  • Verrier D, Mortier B, Albagnac G (1987) Initial adhesion of methanogenic bacteria to polymers. Biotechnol Lett 9:735–740

    Google Scholar 

  • Waffenschmidt S, Jaenicke L (1987) Assay of reducing sugars in the nanomole range with 2,2'-bicinchoninate. Anal Biochem 165:337–340

    Google Scholar 

  • Wegener WS, Reeves HC, Rabin R, Ajl SJ (1968) Alternative pathways of metabolism of short-chain fatty acids. Bacteriol Rev 32:1–26

    Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate fate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365

    CAS  Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    Google Scholar 

  • Wollersheim R, Selz A, Heppner B, Diekmann H (1989) Enrichment of acetate-, propionate-, and butyrate-degrading co-cultures from the biofilm of an anaerobic fluidized bed reactor. Appl Microbiol Biotechnol 31:425–429

    Google Scholar 

  • Yadav VK, Archer DB (1988) Specific inhibition of sulphate-reducing bacteria in methanogenic co-culture. Lett Appl Microbiol 7:165–168

    Google Scholar 

  • Zehnder AJB, Wuhrmann K (1976) Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166

    Google Scholar 

  • Zeikus JG, Henning DL (1977) Methanobacterium arbophilicum sp. nov. an obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek 41:543–552

    Google Scholar 

  • Zellner G, Winter J (1987) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol 9:284–292

    Google Scholar 

  • Zellner G, Stackebrandt E, Messner P, Tindall BJ, Conway de Macario E, Kneifel H, Sletyr UB, Winter J (1989) Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch Microbiol 151:381–390

    Google Scholar 

  • Zellner G, Sleytr UB, Messner P, Kneifel H, Winter J (1990) Methanogenium liminatans spec. nov., a new coccoid, mesophilic mathanogen able to oxidize secondary alcohols. Arch Microbiol 153:287–293

    Google Scholar 

  • Zellner G, Geveke M, Conway de Macario E, Diekmann H (1991a) Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor. Appl Microbiol Biotechnol 36:404–409

    Google Scholar 

  • Zellner G, Geveke M, Diekmann H (1991b) Start-up and operation of a fluidized-bed reactor oxidizing butyrate by a defined syntrophic population. Biotechnol Lett 13:687–691

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: G. Zellner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heppner, B., Zellner, G. & Diekmann, H. Start-up and operation of a propionate-degrading fluidized-bed reactor. Appl Microbiol Biotechnol 36, 810–816 (1992). https://doi.org/10.1007/BF00172200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00172200

Keywords

Navigation