, Volume 41, Issue 4, pp 178–228 | Cite as

MHC ligands and peptide motifs: first listing

  • Hans-Georg Rammensee
  • Thomas Friede
  • Stefan Stevanović
Anniversary Review


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achour, A., Picard, O., Zagury, D., Sarin, P. S., Gallo, R. C., Nagler, P. H., and Goldstein, A. L. HGP-30, a synthetic analog of human immunodeficiency virus (HIV) (p17), is a target for cytotoxic T lymphocytes in HIV-infected individuals. Proc Natl Acad Sci USA 87: 7045–7049, 1990Google Scholar
  2. Alsheiklhy, A. R. Interaction of in vitro- and in vivo-generated cytotoxic T Cells with SV40 T antigen — analysis with synthetic peptides. Scand J Immunol 39: 467–479, 1994Google Scholar
  3. Altuvia, Y., Berzofsky, J. A., Rosenfeld, R., and Margalit, H. Sequence features that correlate with MHC restriction. Mol Immunol 31: 1–19, 1994Google Scholar
  4. Anderson, D. C., van Schoten, W. C. A., Barry, M. E., Janson, A. A. M., Buchanan, T. M., and De Vries, R. R. P. A Mycobacterium leprae-specific human T cell epitope cross-reactive with an HLA-DR2 peptide. Science 242: 259, 1988Google Scholar
  5. Banks, T. A., Nair, S., and Rouse, B. T. Recognition by and in vitro induction of cytotoxic T-lymphocytes against predicted epitopes of the immediate-early protein-ICP27 of Herpes-Simplex virus. J Virol 67: 613–616, 1993Google Scholar
  6. Bastin, J., Rothbard, J., Davey, J., Jones, I., and Townsend, A. Use of synthetic peptides of influenza nucleoprotein to define epitopes recognized by class I-restricted cytotoxic T lymphocytes. J Exp Med 165: 1508–1523, 1987Google Scholar
  7. Beauverger, P., Buckland, R., and Wild, T. F. Measles-virus antigens induce both type-specific and canine-distemper virus cross-reactive cytotoxic T-lymphocytes in mice: localization of a common Ld-restricted nucleoprotein epitope. J Gen Virol 74: 2357–2363, 1993Google Scholar
  8. Beauverger, P., Buckland, R., and Wild, F. Measles hemagglutinin induces an Ld-restricted CD8+ cytotoxic T lymphocyte response to two specific epitopes. Virology 200: 281–283, 1994Google Scholar
  9. Bednarek, M. A., Sauma, S. Y., Gammon, M. C., Porter, G., Tamhankar, S., Williamson, A. R., and Zweerink, H. J. The minimum peptide epitope from the influenza matrix protein. Extra and intracellular loading of HLA-A2. J Immunol 147: 4047–4053, 1991Google Scholar
  10. Bergmann, C., McMillan, M., and Stohlman, S. Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis-virus nucleocapsid protein. J Virol 67: 7041–7049, 1993aGoogle Scholar
  11. Bergmann, C., Stohlmann, S. A., and McMillan, M. An endogenously synthesized decamer peptide efficiently primes cytotoxic T-cells specific for the HIV-1 envelope glycoprotein. Eur J Immunol 23: 2777–2781, 1993bGoogle Scholar
  12. Bertoletti, A., Chisari, F. V., Penna, A., Guilhot, S., Galati, L., Missale, G., Fowler, P., Schlicht, H. J., Vitiello, A., Chesnut, R. C., Fiaccadori, F., and Ferrari, C. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis-B virus nucleocapsid protein. J Virol 67: 2376–2380, 1993Google Scholar
  13. Bertoletti, A., Costanzo, A., Chisari, F. V., Levrero, M., Artini, M., Sette, A., Penna, A., Giuberti, T., Fiaccadori, F., and Ferrari, C. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 180: 933–943, 1994Google Scholar
  14. Blum-Tirouvanziam, U., Beghdadi-Rais, C., Roggero, M. A., Valmori, D., Bertholet, S., Bron, C., Fasel, N., and Corradin, G. Elicitation of specific cytotoxic T cells by immunization with malaria soluble synthetic polypeptides. J Immunol 153: 4134–4141, 1994Google Scholar
  15. Bodmer, J. G., Marsh, S. G. E., Albert, E. D., Bodmer, W. F., Dupont, B., Erlich, H. A., Mach, B., Mayr, W. R., Parham, P., Sasazuki, T., Schreuder, G. M. T., Strominger, J. L., Svejgaard, A., and Terasaki, P. I. Nomenclature for factors of the HLA system, 1994. Tissue Antigens 44: 1–18, 1994Google Scholar
  16. Bogen, B., Snodgrass, R., Briand, J. P., and Hannestad, K. Synthetic peptides and beta-chain gene rearrangement reveal a diversified T cell repertoire for a lambda light chain third hypervariable region. Eur J Immmunol 16: 1379–1384, 1986Google Scholar
  17. Bonneau, R. H., Salvucci, L. A., Johnson, D. C., and Tevethia, S. S. Epitope specificity of H-2Kb-restricted, HSV-1-cross-reactive, and HSV-2-cross-reactive cytotoxic T-lymphocyte clones. Virology 195: 62–70, 1993Google Scholar
  18. Braciale, T. J., Braciale, V. L., Winkler, M., Stroynowski, I., Hood, L., Sambrook, J., and Gething, M.-J. On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolic T lymphocytes. J Exp Med 166: 678–692, 1987Google Scholar
  19. Brichard, V., Van Pel, A., Wölfel, T., Wölfel, C., De Plaen, E., Lethe, B., Coulie, P., and Boon, T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T-lymphocytes on HLA-A2 melanomas. J Exp Med 178: 489–495, 1993Google Scholar
  20. Brooks, J. M., Murray, R. J., Thomas, W. A., Kurilla, M. G., and Rickinson, A. B. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J Exp Med 178: 879–887, 1993Google Scholar
  21. Brown, E. L., Wooters, J. L., Ferenz, C. R., O'Brien, C. M., Hewick, R. M., and Herrmann, S. H. Characterization of peptide binding to the murine MHC class I H-2Kk molecule — sequencing of the bound peptides and direct binding of synthetic peptides to isolated class I molecules. J Immunol 153: 3079–3092, 1994Google Scholar
  22. Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33–39, 1993CrossRefPubMedGoogle Scholar
  23. Burrows, S. R., Sculley, T. B., Misko, I. S., Schmidt, C., and Moss, D. J. An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3). J Exp Med 171: 345–349, 1990Google Scholar
  24. Buseyne, F., McChesney, M., Porrot, F., Kovarik, S., Guy, B., and Riviere, Y. Gag-specific cytotoxic T-lymphocytes from human-immunodeficiency-virus type-1-infected individuals: Gag epitopes are clustered in three regions of the p24gag protein. J Virol 67: 694–702, 1993Google Scholar
  25. Buseyne, F. and Riviere, Y. HIV-specific CD8+T-cell immune reponses and viral replication. Aids 7: S81-S85, 1993Google Scholar
  26. Buus, S.,Sette, A., Colon, S. M., Miles, C., and Grey, H. M. The relation between major histocompatibility comples (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 235: 1353–1358, 1987Google Scholar
  27. Cao, W. X., Myers-Powell, B. A., and Braciale, T. J. Recognition of an immunoglobulin Vh epitope by influenza virus-specific class I major histocompatibility complex-restricted cytolytic T lymphocytes. J Exp Med 179: 195–202, 1994Google Scholar
  28. Carbone, F. R., Moore, M. W., Sheil, J. M., and Bevan, M. J. Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 167: 1767–1779, 1988Google Scholar
  29. Celis, E., Tsai, V., Crimi, C., DeMars, R., Wentworth, P. A., Chesnut, R. W., Grey, H. M., Sette, A., and Serra, H. M. Induction of antitumor cytotoxic T-lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 91: 2105–2109, 1994Google Scholar
  30. Cerrone, M. C., Ma, J. J., and Stephens, R. S. Cloning and sequence of the gene for heat-shock protein-60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun 59: 79–90, 1991Google Scholar
  31. Cerundo, V., Elliot, T., Elvin, J., Bastin, J., Rammensee, H.-G., and Townsend, A. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur J Immunol 21: 2069–2075, 1991Google Scholar
  32. Chicz, R. M., Urban, R. G., Lane, W. S., Gorga, J. C., Stern, L. J., Vignali, D. A. A., and Strominger, J. L. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358: 764–768, 1992Google Scholar
  33. Chicz, R. M., Urban, R. G., Gorga, J. C., Vigali, D. A. A., Lane, W. S., and Strominger, J. L. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178: 27–47, 1993Google Scholar
  34. Corr, M., Boyd, L. F., Frankel, S. R., Kozlowski, S., Padlan, E. A., and Margulies, D. H. Endogenous peptides of a soluble major histocompatibility complex class-I molecule, H-2Lds-sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 176: 1681–1692, 1992Google Scholar
  35. Corr, M., Boyd, L. F., Padlan, E. A., and Margulies, D. H. H-2Dd exploits a 4 residue peptide binding motif. J Exp Med 178: 1877–1892, 1993Google Scholar
  36. Cossins, J., Gould, K. G., Smith, M., Driscoll, P., and Brownlee, G. G. Precise prediction of a Kk-restricted cytotoxic T-cell epitope in the NS1 protein of influenza-virus using an MHC allele-specific motif. Virology 193: 289–295, 1993Google Scholar
  37. Coulie, P. G., Brichard, V., Van Pel, A., Wölel, T., Schneider, J., Traversari, C., Mattei, S., De Plaen, E., Lurquin, C., Szikora, J. P., Renauld, J. C., and Boon, T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T-lymphocytes on HLA-A2 melanomas. J Exp Med 180: 35–42, 1994Google Scholar
  38. Cox, A. L., Skipper, J., Chen, Y., Henderson, R. A., Darrow, T. L., Shabanowitz, J., Engelhard, V. H., Hunt, D. F., and Slingluff, C. L. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264: 716–719, 1994Google Scholar
  39. Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 12: 259–293, 1994Google Scholar
  40. Culmann, B., Gomard, E., Kieny, M. P., Guy, B., Dreyfus, F., Saimot, A. G., Sereni, D., Sicard, D., and Levy, J. P. 6 epitopes reacting with human cytotoxic CD8+ T-cells in the central region of the HIV-1 nef protein. J Immunol 146: 1560–1565, 1991Google Scholar
  41. Dai, L. C., West, K., Littaua, R., Takahashi, K., and Ennis, F. A. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J Virol 66: 3151–3154, 1992Google Scholar
  42. De Bergeyck, V., De Plaen, E., Chomez, P., Boon, T., and Van Pel, A. An inttracisternal A-particle sequence codes for an antigen recognized by syngeneic cytolytic T lymphocytes on a mouse spontaneous leukemia. Eur J Immunol 24: 2203–2212, 1994Google Scholar
  43. Deckhut, A. M., Lippolis, J. D., and Tevethia, S. S. Comparative analysis of core amino-acid-residues of H-2Db-restricted cytotoxic T-lymphocyte recognition epitopes in Simian virus 40 T antigen. J Virol 66: 440–447, 1992Google Scholar
  44. DiBrino, M., Parker, K. C., Shiloach, J., Knierman, M., Lukszo, J., Turner, R. V., Biddison, W. E., and Coligan, J. E. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc Natl Acad Sci USA 90: 1508–1512, 1993aGoogle Scholar
  45. DiBrino, M., Tsuchida, T., Turner, R. V., Parker, K. C., Coligan, J. E., and Biddison, W. E. HLA-A1 and HLA-A3 T-cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151: 5930–5935, 1993bGoogle Scholar
  46. DiBrino, M., Parker, K. C., Shiloach, J., Turner, R. V., Tsuchida, T., Garfield, M., Baddison, W. E., and Coligan, J. E. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 152: 620–631, 1994Google Scholar
  47. Dick, L. R., Aldrich, C., Jameson, S. C, Moomaw, C. R., Pramanik, B. C., Doyle, C. K., Demartino, G. N., Bevan, M. J., Forman, J. M., and Slaughter, C. A. Proteolytic processing of ovalbumin and beta-galactosidase by the proteasome to yield antigenic peptides. J Immunol 152: 3884–3894, 1994Google Scholar
  48. Eberl, G., Sabbatini, A., Servis, C., Romero, P., Maryanski, J. L., and Corradin, G. MHC class I H-2Kd-restricted antigenic peptides: additional constraints for the binding motif. Int Immunol 5: 1489–1492, 1993Google Scholar
  49. Engelhard, V. H., Appella, E., Benjamin, D. C., Bodnar, W. M., Cox, A. L., Chen, Y., Henderson, R. A., Huczko, E. L., Michel, H., Sakaguichi, K., Shabanowitz, J., Sevilir, N., Slingluff, C. L., and Hunt, D. F. Mass spectrometric analysis of peptides associated with the human class-I MHC molecules HLA-A2.1 and HLA-B7 and identification of structural features that determine binding. In A. Sette (ed.): Naturally Processed Peptides, Karger, pp. 39–62, 1993Google Scholar
  50. Engelhard, V. H. Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 6: 13–23, 1994Google Scholar
  51. Falk, K., Rötzschke, O., and Rammensee, H.-G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348: 248–251, 1990Google Scholar
  52. Falk, K., Rötzschke, O., Deres, K., Metzger, J., Jung, G., and Rammensee, H.-G. Identification of naturally processed viral non-apeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 174: 425–434, 1991aGoogle Scholar
  53. Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351: 290–296, 1991bCrossRefPubMedGoogle Scholar
  54. Falk, K., Rötzschke, O., Grahovac, B., Schendel, D., Stevanović, S., Gnau, V., Jung, G., Strominger, J. L., and Rammensee, H.-G. Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci USA 90: 12005–12009, 1993aGoogle Scholar
  55. Falk, K., Rötzschke, O., Grahovac, B., Schendel, D., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B35 and HLA-B37 molecules. Immunogenetics 38: 161–162, 1993bGoogle Scholar
  56. Falk, K., Rötzschke, O., Stevanović, S., Gnau, V., Sparbier, K., Jung, G., Rammensee, H.-G., and Walden, P. Analysis of a naturally occuring HLA class I-restricted viral epitope. Immunology 82: 337–342, 1994aGoogle Scholar
  57. Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 39: 230–242, 1994bGoogle Scholar
  58. Falk, K., Rötzschke, O., Takiguchi, M., Grahovac, B., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-A1, -A11, -A31, and -A33 molecules. Immunogenetics 40: 238–241, 1994cGoogle Scholar
  59. Falk, K., Rötzschke, O., Takiguchi, M., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B51, -B52, and-B78 molecules and implications for Behçet's disease. Int Immunol 7: 223–228, 1995aGoogle Scholar
  60. Falk, K., Rötzschke, O., Takiguchi, M., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics 41: 162–164, 1995bGoogle Scholar
  61. Falk, K., Rötzschke, O., Takiguchi, M., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics 41: 165–168, 1995cGoogle Scholar
  62. Falk, K. and Rötzschke, O. Consensus motifs and peptide ligands of MHC class I molecules. Sem Immunol 5: 81–94, 1993Google Scholar
  63. Feltkamp, M. C. W., Smith, H. L., Vierboom, M. P. M., Minnaar, R. P., Dejongh, B. M., Drijfhout, J. W., Terschegget, J., Melief, C. J. M., and Kast, W. M. Vaccination with cytotoxic T-lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type-16-transformed cells. Eur J Immunol 23: 2242–2249, 1993Google Scholar
  64. Fischer Lindahl, K. F., Hermel, E., Loveland, B. E., and Wang, C. R. Maternally transmitted antigen of mice — a model transplantation antigen. Annu Rev Immunol 9: 351–372, 1991Google Scholar
  65. Fleischhauer, K., Wallny, H.-J., Avila, D., Vilbois, F., Traversari, C., and Bordignon, C. Characterization of natural peptide ligands for HLA-B44. Tissue Antigens, in pressGoogle Scholar
  66. Franco, M. A., Prieto, I., Labbe, M., Poncet, D., Borras-Cuesta, F., and Cohen, J. An immunodominant cytotoxic T cell epitope on the VP7 rotavirus protein overlaps the H2 signal peptide. J Gen Virol 74: 2579–2586, 1993Google Scholar
  67. Franco, M. A., Lefevre, P., Willems, P., Lintermanns, P., Tosser, G., and Cohen, J. Identification of cytotoxic T cell epitopes on the Vp3 and Vp6 rotavirus proteins. J Gen Virol 75: 589–596, 1994Google Scholar
  68. Fremont, D. H., Matsamura, M., Stura, E. A., Peterson, P. A., and Wilson, I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257: 919–927, 1992Google Scholar
  69. Frumento, G., Harris, P. E., Gawinowicz, M. A., Suciu-Foca, N., and Pernis, B. Sequence of a prominent 16-residue self-peptide bound to HLA-B27 in a lymphoblastoid cell line. Cell Immunol 152: 623–626, 1993Google Scholar
  70. Gaugler, B., Van den Eynde, B., Van der Bruggen, P., Romero, P., Gaforio, J. J., De Plaen, E., Lethe, B., Brasseur, F., and Boon, T. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T-lymphocytes. J Exp Med 179: 921–930, 1994Google Scholar
  71. Gavin, M. A., Gilbert, M. J., Riddell, S. R., Greenberg, P. D., and Bevan, M. J. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class-I MHC-restricted CTL epitopes. J Immunol 151: 3971–3980, 1993Google Scholar
  72. Gavioli, R., Kurilla, M. G., De Campos-Lima, P. O., Wallace, L. E., Dolcetti, R., Murray, R. J., Rickinson, A. B., and Masucci, M. G. Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogeneticities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol 67: 1572–1578, 1993Google Scholar
  73. Geluk, A., Van Meijgaarden, K. E., Janson, A. A. M., Drijfhout, J. W., Meloen, R. H., De Vries, R. R. P., and Ottenhoff, T. H. M. Functional analysis of DR17(DR3)-restricted mycobacterial T-cell epitopes reveals DR17-binding motif and enables the design of allele-specific competitor peptides. J Immunol 149: 2864–2871, 1992Google Scholar
  74. Geluk, A., Van Meijgaarden, K. E., Southwood, S., Oseroff, C., Drijfhout, J. W., De Vries, R. R. P., Ottenhoff, T. H. M., and Sette, A. HLA-DR3 molecules can bind peptides carrying two alternative specific submotifss. J Immunol 152: 5742–5748, 1994Google Scholar
  75. Gotch, F., McMichael, A., and Rothbard, J. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med 168: 2045–2057, 1988Google Scholar
  76. Gould, K., Cossins, J., Bastin, J., Brownlee, G. G., and Townsend, A. A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cytotoxic T lymphocytes. J Exp Med 170: 1051–1056, 1989Google Scholar
  77. Gould, K. G., Scotney, H., Townsend, A. R., Bastin, J., and Brownlee, G. G. Mouse H-2k-restricted cytotoxic T cells recognize antigenic determinants in both the HA1 and HA2 subunits of the influenza A/PR/8/34 hemagglutinin. J Exp Med 166: 693–701, 1987Google Scholar
  78. Gould, K. G., Scotney, H., and Brownlee, G. G. Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the Influenza A/PR/8/34 virus hemagglutinin. J Virol 65: 5401–5409, 1991Google Scholar
  79. Gregersen, P. K., Silver, J., and Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30: 1205–1213, 1987Google Scholar
  80. Guo, H. C., Jardetzky, T. S., Garrett, T. P. J., Lane, W. S., Strominger, J. L., and Wiley, D. C. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360: 364–366, 1992Google Scholar
  81. Guo, H. C., Madden, D. R., Silver, M. L., Jardetzky, T. S., Gorga, J. C., Strominger, J. L., and Wiley, D. C. Comparison of the P2 specificity pocket in three human histocompatibility antigens — HLA-A*6801, HLA-A*0201, and HLA-B*2705. Proc Natl Acad Sci USA 90: 8053–8057, 1993Google Scholar
  82. Hammer, J., Takacs, B., and Sinigaglia, F. Identification of motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med 176: 1007–1013, 1992Google Scholar
  83. Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. Promiscuos and allele-specific anchors in HLA-DR-binding peptides. Cell 74: 197–203, 1993Google Scholar
  84. Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., and Sinigaglia, F. Precise prediction of MHC class II-peptide interaction based on peptide side chain scanning. J Exp Med 180: 2353–2358, 1994Google Scholar
  85. Harpur, A. G., Ziemiekci, A., Wilks, A. F., Falk, K., Rötzschke, O., and Rammensee, H.-G. A prominent natural H-2Kd ligand is derived from protein-tyrosine kinase JAK1. Immunol Lett 35: 235–238, 1993Google Scholar
  86. Harris, P. E., Colovai, A., Liu, Z., Favera, R. D., and Suciu-Foca, N. Naturally processed HLA class I bound peptides from c-myc-transfected cells reveal allele-specific motifs. J Immunol 151: 5966–5974, 1993Google Scholar
  87. Henderson, R. A., Michel, H., Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D. F., and Engelhard, V. H. HLA-A2.1-associated peptides from a mutant cell line — a 2nd pathway of antigen presentation. Science 255: 1264–1266, 1992Google Scholar
  88. Henderson, R. A., Cox, A. L., Sakaguchi, K., Appella, E., Shabanowitz, J., Hunt, D. F., and Engelhard, V. H. Direct identification of an endogenous peptide recognized by multiple HLA-A2.1-specific cytotoxic T cells. Proc Natl Acad Sci USA 90: 10275–10279, 1993Google Scholar
  89. Hill, A. V. S., Elvin, J., Willis, A. C., Aidoo, M., Allsopp, C. E. M., Gotch, F. M., Gao, X. M., Takiguchi, M., Greenwood, B. M., Townsend, A. R. M., McMichael, A. J., and Whittle, H. C. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360: 434–439, 1992Google Scholar
  90. Hill, C. M., Liu, A., Marshall, K. W., Mayer, J., Jorgensen, B., Yuan, B., Cubbon, R. M., Nichols, E. A., Wicker, L. S., and Rothbard, J. B. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J Immunol 152: 2890–2898 1994Google Scholar
  91. Hosmalin, A., Clerici, M., Houghten, R., Pendleton, C. D., Felxner, C., Lucey, D. R., Moss, B., Germain, R. N., Shearer, G. M., and Berzofsky, J. A. An epitope in human immunodeficiency virus 1 reverse transcriptase recognized by both mouse and human cytotoxic T lymphocytes. Proc Natl Acad Sci USA 87: 2344–2348, 1990Google Scholar
  92. Howard, J. C. and Seelig, A. Antigen-processing — peptides and the proteasome. Nature 365: 211–212, 1993Google Scholar
  93. Huczko, E. L., Bodnar, W. M., Benjamin, D., Sakaguchi, K., Zhu, N. Z., Shabanowitz, J., Henderson, R. A., Appella, E., Hunt, D. F., and Engelhard, V. H. Characteristics of endogenous peptides eluted from the class-I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 151: 2572–2587, 1993Google Scholar
  94. Huet, S., Nixon, D. F., Rothbard, J. B., Townsend, A., Ellis, S. A., and McMichael, A. J. Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27. Int Immunol 2: 311–316, 1990Google Scholar
  95. Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A. L., Appella, E., and Engelhard, V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255: 1261–1263, 1992aPubMedGoogle Scholar
  96. Hunt, D. F., Michel, H., Dickinson, T. A., Shabanowitz, J., Cox, A. L., Sakaguchi, K., Appella, E., Grey, H. M., and Sette, A. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256: 1817–1820, 1992bGoogle Scholar
  97. Jackson, M. R., Cohendoyle, M. F., Peterson, P. A., and Williams, D. B. Regulation of MHC class-I transport by the molecular chaperone, calnexin (P88, IP90). Science 263: 384–387, 1994Google Scholar
  98. Jackson, M. R. and Peterson, P. A. Assembly and intracellular transport of MHC class-I molecules. Annu Rev Cell Biol 9: 207–235, 1993Google Scholar
  99. Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R., and Wiley, D. C. Identification of self peptides bound to purified HLA-B27. Nature 353: 326–329, 1991Google Scholar
  100. Johnson, R. P., Trocha, A., Buchanan, T. M., and Walker, B. D. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp 120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 67: 438–445, 1993Google Scholar
  101. Joyce, S., Tabaczewski, P., Angeletti, R. H., Nathenson, S. G., and Stroynowski, I. A nonpolymorphic major histocompatibility complex class I b molecule binds a large array of diverse self-peptides. J Exp Med 179: 579–588, 1994Google Scholar
  102. Kast, W. M., Offringa, R., Peters, P. J., Voordouw, A. C., Meloen, R. H., Van der Eb, A. J., and Melief, C. J. M. Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59: 603–614, 1989Google Scholar
  103. Kast, W. M., Roux, L., Curren, L., Blom, H. J. J., Voordouw, A. C., Meloen, R. H., Kolakofsky, D., and Melief, C. J. M. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide Proc Natl Acad Sci USA 88: 2283–2287, 1991Google Scholar
  104. Kast, W. M., Brandt, R. M. P., Sidney, J., Drijfhout, J. W., Kubo, R. T., Grey, H. M., Melief, C. J. M., and Sette, A. Role of HLA-A motifs in identification of potential CTL epitopes in human papiloomavirus type 16 E6 and E7 proteins. J Immunol 152: 3904–3912, 1994Google Scholar
  105. Kawakami, Y., Eliyahu, S., Delgado, C. H., Robbins, P. F., Rivoltini, L., Topalian, S. L., Miki, T., and Rosenberg, S. A. Cloning of the gene coding for a shared human-melanoma antigen recognized by autologous T-cells infiltrating into tumor. Proc Natl Acad Sci USA 91: 3515–3519, 1994aGoogle Scholar
  106. Kawakami, Y., Eliyahu, S., Delgado, C. H., Robbins, P. F., Sakaguchi, K., Appella, E., Yannelli, J. R., Adema, G. J., Miki, T., and Rosenberg, S. A. Identification of a human-melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91: 6458–6462, 1994bGoogle Scholar
  107. Kawakami, Y., Eliyahu, S., Sakaguchi, K., Robbins, P. F., Rivoltini, L., Yannelli, J. R., Appella, E., and Rosenberg, S. A. Identification of ane immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180: 347–352, 1994cGoogle Scholar
  108. Khalil, I., D'Auriol, L., Gobet, M., Morin, L., Lepage, V., Deschamps, I., Park, M. S., Degos, L., Galibert, F., and Hors, J. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest 85: 1315–1319, 1990Google Scholar
  109. Khanna, R., Burrows, S. R., Kurilla, M. G., Jacob, C. A., Misko, I. S., Sculley, T. B., Kieff, E., and Moss, D. J. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176: 169–176, 1992Google Scholar
  110. Kinouchi, R., Kobayashi, H., Sato, K., Kimura, S., and Katagiri, M. Peptide motifs of HLA-DR4/DR53 (DRB1*0405/DRB4*0101) molecules. Immunogenetics 40: 376–378, 1994Google Scholar
  111. Klavinskis, L. S., Whitton, J. L., Joly, E., and Oldstone, M. B. A. Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology 178: 393–400, 1990Google Scholar
  112. Klein, J. Natural History of the Major Histocompatibility Complex, J. Wiley & Sons, New York, 1986Google Scholar
  113. Koenig, S., Fuerst, T. R., Wood, L. V., Woods, R. M., Suzich, J. A., Jones, G. M., De la Cruz, V. F., Davey, R. T. Jr., Venkatesan, S., Moss, B., Biddison, W. E., and Fauci, A. S. Mapping the fine specificity of a cytolytic T cell response to HIV-1 nef protein. J Immunol 145: 127–135, 1990PubMedGoogle Scholar
  114. Koziel, M. J., Dudley, D., Wong, J. T., Dienstag, J., Houghton, M., Ralston, R., and Walker, B. D. Intrahepatic cytotoxic T-lymphocytes specific for hepatitis-C virus in persons with chronic hepatitis. J Immunol 149: 3339–3344, 1992Google Scholar
  115. Kropshofer, H., Max, H., Müller, C. A., Hesse, F., Stevanović, S., Jung, G., and Kalbacher, H. Self-peptide released from class II HLA-DR1 exhibits a hydrophobic two-residue contact motif. J Exp Med 175: 1799–1803, 1992Google Scholar
  116. Kropshofer, H., Max, H., Halder, T., Kalbus, M., Müller, C. A., and Kalbacher, H. Self-peptides from four HLA-DR alleles share hydrophobic anchor residues near the NH2-terminal including proline as a stop signal for trimming. J Immunol 151: 4732–4742, 1993Google Scholar
  117. Kubo, R. T., Sette, A., Grey, H. M., Appella, E., Sakaguchi, K., Zhu, N. Z., Arnott, D., Sherman, N., Shabanowitz, J., Michel, H., Bodnar, W. M., Davis, T. A., and Hunt, D. F. Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 152: 3913–3924, 1994Google Scholar
  118. Kulkarni, A. B., Morse, III, H. C., Bennink, J. R., Yewdell, J. W., and Murphy, B. R. Immunization of mice with vaccinia virus-M2 recombinant induces epitope-specific and cross-reactive Kd-restricted CD8+ cytotoxic-T cells. J Virol 67: 4086–4092, 1993Google Scholar
  119. Kumar, S., Miller, L. H., Quakyi, I. A., Keister, D. B., Houghten, R. A. Maloy, W. L., Moss, B., Berzofsky, J. A., and Good, M. F. Cytotoxic T cells specific for the circumsporozoite protein of Plasmodium falciparum. Nature 334: 258–260, 1988Google Scholar
  120. Kutubuddin, M., Simons, J., and Chow, M. Poliovirus-specific major histocompatibility complex class-I-restricted cytolytic T-cell epitopes in mice localize to neutralizing antigenic regions. J Virol 66: 5967–5974, 1992Google Scholar
  121. Kuwano, K., Braciale, T. J., and Ennis, F. A. Localization of a cross-reactive CTL epitope to the transmembrane region of the hemagglutinin of influenza H1 and H2 viruses. FASEB J 2: 2221, 1988Google Scholar
  122. Larson, J. K., Wunner, W. H., Otvos, Jr., L., and Ertl, H. C. Identification of an immunodominant epitope within the phosphoprotein of rabies virus that is recognized by both class I- and class II-restricted T cells. J Virol 65: 5673–5679, 1991Google Scholar
  123. Lee, S. P., Thomas, S. A., Murray, R. J., Khanim, F., Faur, S., Young, L. S., Rowe, M., Kurilla, M., and Rickinson, A. B. HLA A2.1-restricted cytotoxic T-cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 67: 7428–7435, 1993Google Scholar
  124. Lethé, B., Van den Eynde, B., Van Pel, A., Corradin, G., and Boon, T. Mouse tumor rejection antigens P815A and antigen P815B: 2 epitopes carried by a single peptide. Eur J Immunol 22: 2283–2288, 1992Google Scholar
  125. Littua, R. A., Oldstone, M. B. A., Takeda, A., Debouck, C., Wong, J. T., Tuazon, C. U., Moss, B., Kievits, F., and Ennis, F. A. An HLA-C restricted CD8+ cytotoxic T lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. J Virol 65: 4051–4056, 1991Google Scholar
  126. Lurquin, C., Van Pel, A., Mariamé, B., De Plaen, E., Szikora, J.-P., Janssens, C., Reddehase, M. J., Lejeune, J., and Boon, T. Structure of the gene of tum-transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58: 293–303, 1989Google Scholar
  127. Madden, D. R., Garboczi, D. N., and Wiley, D. C. The antigenic identify of peptide-MHC complexes — a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75: 693–708, 1993Google Scholar
  128. Maier, R., Falk, K., Rötzschke, O., Maier, B., Gnau, V., Stevanović, S., Jung, G., Rammensee, H.-G., and Meyerhans, A. Peptide motifs of HLA-A3,-A24, and-B7 molecules as determined by pool sequencing. Immunogenetics 40: 306–308, 1994Google Scholar
  129. Malcherek, G., Falk, K., Rötzschke, O., Rammensee, H.-G., Stevanović, S., Gnau, V., Jung, G., and Melms, A. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int Immunol 5: 1229–1237, 1993Google Scholar
  130. Mandelboim, O., Berke, G., Fridkin, M., Feldman, M., Einstein, M., and Eisenbach, L. CTL induction by a tumor-associated antigen octapeptide derived from a murine lung-carcinoma. Nature 369: 67–71, 1994Google Scholar
  131. Marrack, P., Ignatowicz, L., Kappler, J. W., Boymel, J., and Freed, J. H. Comparison of peptides bound to spleen and thymus class-II. J Exp Med 178: 2173–2183, 1993Google Scholar
  132. Martin, R., Howell, M. D., Jaraquemada, D., Flerlage, M., Richert, J., Brostoff, S., Long, E. O., McFarlin, D. E., and McFarland, H. F. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173: 19–24, 1991Google Scholar
  133. Maryanski, J. L., Pala, P., Corradin, G., Jordan, B. R., and Cerottini, J.-C. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature 324: 578–579, 1986Google Scholar
  134. Matsushita, S., Takahashi, K., Motoki, M., Komoriya, K., Ikagawa, S., and Nishimura, Y. Allele specificity of structural requirement for peptides bound to HLA-DRB1*0405 and-DRB1*0406 complexes: implication for the HLA-associated susceptibility to methimazole-induced insulin autoimmune syndrome. J Exp Med 180: 873–883, 1994Google Scholar
  135. Missale, G., Redeker, A., Person, J., Fowler, P., Guilhot, S., Schlicht, H. J., Ferrari, C., and Chisari, F. V. HLA-A31- and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med 177: 751–762, 1993Google Scholar
  136. Momburg, F., Neefjes, J. J., and Hämmerling, G. J. Peptide selection by MHC-encoded Tap transporters. Curr Opin Immunol 6: 32–37, 1994Google Scholar
  137. Nayersina, R., Fowler, P., Guilhot, S., Missale, G., Cerny, A., Schlicht, H. J., Vitiello, A., Chesnut, R., Person, J. L., Redeker, A. G., and Chisari, F. V. HLA-A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 150: 4659–4671, 1993Google Scholar
  138. Neefjes, J. J. and Momburg, F. Cell biology of antigen presentation. Curr Opin Immunol 5: 27–34, 1993Google Scholar
  139. Nelson, C. A., Roof, R. W., McCourt, D. W., and Unanue, E. R. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proc Natl Acad Sci USA 89: 7380–7383, 1992Google Scholar
  140. Newcomb, J. R. and Cresswell, P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha-beta-dimers. J Immunol 150: 499–507, 1993Google Scholar
  141. Norda, M., Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Comparison of the H-2Kk and H-2Kkml restricted peptide motifs. J Immunother 14: 144–149, 1993Google Scholar
  142. O'Sullivan, D., Arrhenius, T., Sidney, J., Del Guercio, M.-F., Albertson, M., Wall, M., Oseroff, C., Southwood, S., Colon, S. M., Gaeta, F. C. A. and Sette, A. On the interaction of promiscuos antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 147: 2663–2669, 1991Google Scholar
  143. Oldstone, M. B. A., Whitton, J. L., Lewicki, H., and Tishon, A. Fine dissection of a nine amino acid glycoprotein epitope, a major determinant recognized by lymphocytic choriomeningitis virus-specific class I-restricted H-2Db cytotoxic T lymphocytes. J Exp Med 168: 559–570, 1988Google Scholar
  144. Oldstone, M. B. A., Tishon, A., Eddleston, M., De La Torre, J. C., McKee, T., and Whitton, J. L. Vaccination to prevent persistent viral infection. J Virol 67: 4372–4378, 1993Google Scholar
  145. Ortmann, B., Androlewicz, M. J., and Cresswell, P. MHC class I beta2-microglobulin complexes associate with Tap transporters before peptide binding. Nature 368: 364–867, 1994Google Scholar
  146. Pamer, E. G., Harty, J. T., and Bevan, M. J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353: 852–855, 1991Google Scholar
  147. Pamer, E. G. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 152: 686–694, 1994Google Scholar
  148. Parker, K. C., Bednarek, M. A., and Coligan, J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152: 163–175, 1994PubMedGoogle Scholar
  149. Pfeifer, J. D., Wick, M. J., Roberts, R. L., Findlay, K., Normark, S. J., and Harding, C. V. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361: 359–362, 1993Google Scholar
  150. Phillips, R. E., Rowland-Jones, S., Huet, S., Hill, A., Sutton, J., Murray, R., Brooks, J., and McMichael, A. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354: 453–459, 1991Google Scholar
  151. Pinet, V., Malnati, M. S., and Long, E. O. Two processing pathways for the MHC class II-restricted presentation of exogenous influenza virus antigen. J Immunol 152: 4852–4860, 1994Google Scholar
  152. Rammensee, H.-G., Falk, K., and Rötzschke, O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11: 213–244, 1993Google Scholar
  153. Rawle, F. C., O'Connell, K. A., Geib, R. W., Roberts, B., and Gooding, L. R. Fine mapping of an H-2Kk restricted cytotoxic T lymphocyte epitope in SV 40 T antigen by using in-frame deletion mutants and a synthetic peptide. J Immunol 141: 2734–2739, 1988Google Scholar
  154. Reay, P. A., Kantor, R. M., and Davis, M. M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome C (93–103). J Immunol 152: 3946–3957, 1994Google Scholar
  155. Reddehase, M. J., Rothbard, J. B., and Koszinowski, U. H. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337: 651–653, 1989Google Scholar
  156. Reich, E. P., Von Grafenstein, H., Barlow, A., Swenson, K. E., Williams, K., and Janeway, C. A. Self peptides isolated from MHC glycoproteins of non-obese diabetic mice. J Immunol 152: 2279–2288, 1994Google Scholar
  157. Riberdy, J. M., Newcomb, J. R., Surman, M. J., Barbosa, J. A., and Cresswell, P. HLA-DR molecules from an antigen-processing mutant-cell line are associated with invariant chain peptides. Nature 360: 474–477, 1992Google Scholar
  158. Robbins, P. A., Lettice, L. A., Rota, P., Santos-Aguado, J., Rothbard, J., McMichael, A. J., and Strominger, J. L. Comparison between two peptide epitopes presented to cytotoxic T lymphocytes by HLA-A2. Evidence for discrete locations withinn HLA-A2. J Immunol 143: 4098–4103, 1989Google Scholar
  159. Robbins, P. F., Elgamil, M., Kawakami, Y., and Rosenberg, S. A. Recognition of tyrosinaee by tumor-infiltrating lymphocytes from a patient responding to immunotherapy. Cancer Res 54: 3124–3126, 1994Google Scholar
  160. Rock, K. L., Rohhstein, L., Gamble, S., and Fleischacker, C. Characterization of antigen-presenting cells that present exogenous antigens in association with class I MHC molecules. J Immunol 150: 438–446, 1993Google Scholar
  161. Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771, 1994Google Scholar
  162. Romero, P., Maryanski, J. L., Corradin, G., Nussenzweig, R. S., Nussenzweig, V., and Zavala, F. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341: 323–326, 1989Google Scholar
  163. Romero, P., Corradin, G., Leuscher, I. F., and Maryanski, J. L. H-2Kd-restricted antigenic peptides share a simple binding motif. J Exp M Med 174: 603–612, 1991Google Scholar
  164. Rötzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G., and Rammensee, H.-G. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348: 252–254, 1990Google Scholar
  165. Rötzschke, O., Falk, K., Stevanović, S., Jung, G., Walden, P., and Rammensee, H.-G. Exact prediction of a natural T cell epitope. Eur J Immunol 21: 2891–2894, 1991Google Scholar
  166. Rötzschke, O., Falk, K., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol 22: 2453–2456, 1992Google Scholar
  167. Rötzschke, O., Falk, K., Stevanović, S., Grahovac, B., Soloski, M. J., Jung, G., and Rammensee, H.-G. Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature 361: 642–644, 1993Google Scholar
  168. Rötzschke, O., Falk, K., Stevanović, S., Gnau, V., Jung, C., and Rammensee, H.-G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics 39: 74–77, 1994Google Scholar
  169. Rötzschke, O. and Falk, K. Origin, structure and motifs of naturally processed MHC class II ligands. Curr Opin Immunol 6: 45–51, 1994Google Scholar
  170. Rudensky, A. Y., Preston-Hurlburt, P., Hong, S.-C., Barlow, A., and Janeway, C. A. Sequence analysis of peptides bound to MHC class II molecules. Nature 353: 622–627, 1991Google Scholar
  171. Rudensky, A. Y., Preston-Hurlburt, P., Al-Ramadi, B. K., Rothbard, J., and Janeway, C. A. Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. Nature 359: 429–431, 1992Google Scholar
  172. Ruppert, J., Sidney, J., Celis, E., Kubo, R. T., Grey, H. M., and Sette, A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74: 929–937, 1993CrossRefPubMedGoogle Scholar
  173. Schulz, M., Aichele, P., Schneider, R., Hansen, T. H., Zinkernagel, R. M., and Hengartner, H. Major histocompatibility complex binding and T-cell recognition of a viral nonapeptide containing a minimal tetrapeptide. Eur J Immunol 21: 1181–1185, 1991Google Scholar
  174. Schumacher, T. N., De Bruijin, M. L., Vernie, L. N., Kast, W. M., Melief, C. J. M., Neefjes, J. J., and Ploegh, H. L. Peptide selection by MHC class I molecules. Nature 350: 703–706, 1991Google Scholar
  175. Sette, A., Buus, S., Appella, E., Smith, J. A., Chesnut, R., Miles, C., Colon, S. M., and Grey, H. M. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA 86: 3296–3300, 1989Google Scholar
  176. Sette, A., Ceman, S., Kubo, R. T., Sakaguchi, K., Appella, E., Hunt, D. F., Davis, T. A., Michal, H., Shabanowitz, J., Rudersdorf, R., Grey, H. M., and DeMars, R. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 258: 1801–1804, 1992Google Scholar
  177. Sette, A., Sidney, J., Oseroff, C., Del Guercio, M. F., Southwood, S., Arrhenius, T., Powell, M. F., Colon, S. M., Gaeta, F. C. A., and Grey, H. M. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J Immunol 151: 3163–3170, 1993Google Scholar
  178. Sette, A., Sidney, J., Del Guercio, M. F., Southwood, S., Ruppert, J., Dahlberg, C., Grey, H. M., and Kubo, R. T. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol Immunol 31: 813–822, 1994Google Scholar
  179. Shawar, S. M., Vyas, J. M., Rodgers, J. R., Cook, R. G., and Rich, R. R. Specialized functions of major histocompatibility class I molecules. II. Hmt binds N-formylated peptides of mitochondrial and procaryotic origin. J Exp Med 174: 941–944, 1991Google Scholar
  180. Shepherd, J. C., Schumacher, T. N. M., Ashton-Rickardt, P. G., Imaeda, S., Ploegh, H. L., Janeway, C. A., and Tonegawa, S. TAP1-dependent peptide translocation in vitro is ATP-dependent and peptide selective. Cell 74: 577–584, 1993Google Scholar
  181. Shirai, M., Okada, H., Nishioka, M., Akatsuka, T., Wychowski, C., Houghten, R., Pendleton, C. D., Feinstone, S. M., and Berzofsky, J. A. An epitope in hepatitis C virus core region recognized by cytotoxic T cells in mice and humans. J Virol 68: 3334–3342, 1994Google Scholar
  182. Sibille, C., Chomez, P., Wildmann, C., Van Pel, A., De Plaen, E., Maryanski, J. L., De Bergeyck, V., and Boon, T. Structure of the gene of tum- transplantation antigen P198: A point mutation generates a new antigenic peptide. J Exp Med 172: 35–45, 1990Google Scholar
  183. Sijts, A. J. A. M., Ossendorp, F., Mengede, E. A. M., Van den Elsen, P. J., and Melief, C. J. M. Immunodominant mink cell focus inducing murine leukemia virus (MuLV)-encoded CTL epitope, identified by its MHC class I binding motif, explains MuLV-type specificity of MCF-directed cytotoxic T lymphocytes. J Immunol 152: 106–116, 1994Google Scholar
  184. Silver, M. L., Guo, H. C., Strominger, J. L., and Wiley, D. C. Atomic structure of a human MHC molecule presenting an influenza-virus peptide. Nature 360: 367–369, 1992Google Scholar
  185. Sinigaglia, F. and Hammer, J. Defining rules for the peptide-MHC class II interaction. Curr Opin Immunol 6: 52–56, 1994Google Scholar
  186. Spouge, J. L., Guy, H. R., Cornette, J. L., Margalit, H., Cease, K., Berzofsky, J. A., and DeLisi, C. Strong conformational propensities enhance T cell antigenicity. J Immunol 138: 204–212, 1987Google Scholar
  187. Srivastava, P. K., Udono, H., Blachere, N. E., and Li, Z. H. Heat-shock proteins transfer peptides during antigen-processing and CTL priming. Immunogenetics 39: 93–98, 1994Google Scholar
  188. Starnbach, M. N. and Bevan, M. J. Cells infected with Yersinia present an epitope to class I MHC-restricted CTL. J Immunol 153: 1603–1612, 1994Google Scholar
  189. Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L., and Wiley, D. C. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 215–221, 1994Google Scholar
  190. Stern, L. J. and Wiley, D. C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2: 245–251, 1994Google Scholar
  191. Stevanović, S. and Rammensee, H.-G. The structure of T cell epitopes. In M. H. V. Van Regenmortel (ed.) Structure of Antigens, in pressGoogle Scholar
  192. Suh, W. K., Cohendoyle, M. F., Früh, K., Wang, K., Peterson, P. A., and Williams, D. B. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264: 1322–1326, 1994Google Scholar
  193. Sutton, J., Rowland-Jones, S., Roseberg, W., Nixon, D., Gotch, F., Gao, X.-M., Murray, N., Spoonas, A., Driscoll, P., Smith, M., Willis, A., and McMichael, A. A sequence pattern for peptides presented to cytotoxic T-lymphocytes by HLA-B8 revealed by analysis of epitopes and eluted peptides. Eur J Immunol 23: 447–453, 1993Google Scholar
  194. Sweetser, M. T., Morrison, L. A., Braciale, V. L., and Braciale, T. J. Recognition of pre-processed endogenous antigen by class I but not class II MHC-restricted T cells. Nature 342: 180–182, 1989Google Scholar
  195. Szikora, J. P., Van Pel, A., and Boon, T. Tum-mutation P35b generates the MHC-binding site of a new antigenic peptide. Immunogenetics 37: 135–138, 1993Google Scholar
  196. Takahashi, H., Cohen, J., Hosmalin, A., Cease, K. B., Houghton, R., Cornette, J. L., DeLisi, C., Moss, B., Germain, R. N., and Berzofsky, J. A. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 85: 3105, 1988Google Scholar
  197. Takahashi, K., Dai, L. C., Fuerst, T., Biddison, W. E., Earl, P., Moss, B., and Ennis, F. A. Specific lysis of human immunodeficiency virus type 1-infected cells by H HLA-A3.1-restricted CD8 cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc Natl Acad Sci USA 88: 10277–10281, 1991Google Scholar
  198. Tarpey, I., Stacey, S., Hickling, J., Birley, H. D. L., Renton, A., Mcindoe, A., and Davies, D. H. Human cytotoxic T lymphocytes stimulated by endogenously processed human papillomavirus type 11 E7 recognize a peptide containing a HLA-A2 (A*0201) motif. Immunology 81: 222–227, 1994Google Scholar
  199. Tevethia, S. S., Lewis, M., Tanaka, Y., Milici, J., Knowles, B., Maloy, W. L., and Anderson, R. Dissection of H-2Db-restricted cytotoxic T-lymphocyte epitopes on Simian virus 40 T antigen by the use of synthetic peptides and H-2Dbm mutants. J Virol 64: 1192–1200, 1990Google Scholar
  200. Todd, J. A., Bell, J. I., and McDevitt, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599–604, 1987Google Scholar
  201. Townsend, A., Öhlén, C., Bastin, J., Ljunggren, H.-G., Foster, L., and Kärre, K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443–448, 1989Google Scholar
  202. Townsend, A., Öhlen, C., Rogers, M., Edwards, J., Mukherjee, S., and Bastin, J. Source of unique tumour antigens. Nature 371: 662, 1994Google Scholar
  203. Townsend, A. R., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D., and McMichael, A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44: 959–968, 1986Google Scholar
  204. Traversari, C., Van der Bruggen, P., Luescher, I. F., Lurquin, C., Chomez, P., Van Pel, A., De Plaen, E., Amar-Costesec, A., and Boon, T. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176: 1453–1457, 1992CrossRefPubMedGoogle Scholar
  205. Udaka, K., Tsomides, T. J., and Eisen, H. N. A naturally occuriing peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I protein. Cell 69: 989–998, 1992Google Scholar
  206. Ukaka, K., Tsomides, T. J., Walden, P., Fukusen, N., and Eisen, H. N. A ubiquitous protein is the source of naturally occurring peptides that are recognize by a CD8+ T-cell clone. Proc Natl Acad Sci USA 90: 11272–11276, 1993Google Scholar
  207. Urban, R. G., Chicz, R. M., Lane, W. S., Strominger, J. L., Rehm, A., Kenter, M. J. H., Uytdehaag, F. G. C. M., Ploegh, H., Uchanska-Ziegler, B., and Ziegler, A. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci USA 91: 1534–1538, 1994Google Scholar
  208. Utz, U., Koenig, S., Coligan, J. E., and Biddison, W. E. Presentation of three different viral peptides, HTLV-1 Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J Immunol 149: 214–221, 1992Google Scholar
  209. Van Binnendijk, R. S., Versteeg van Oosten, J. P., Poelen, M. C., Brugghe, H. F., Hoogerhout, P., Osterhaus, A. D., and Uytdehaag, F. G. Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J Virol 67: 2276–2284, 1993Google Scholar
  210. Van Bleek, G. M. and Nathenson, S. G. Isolation of an immunodominant viral peptide from the class I H-2Kb molecule. Nature 348: 213–216, 1990Google Scholar
  211. Van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., and Boon, T. A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 254: 1643–1647, 1991PubMedGoogle Scholar
  212. Venet, A. and Walker, B. D. Cytotoxic T-cell epitopes in HIV SIV Infection. Aids 7: S117-S126, 1993Google Scholar
  213. Vogt, A. B., Kropshofer, H., Kalbacher, H., Kalbus, M., Rammensee, H.-G., Coligan, J. E., and Martin, R. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol 153: 1665–1673, 1994Google Scholar
  214. Von Boehmer, H. Thymic selection — a matter of life and death. Immunol Today 13: 454–458, 1992Google Scholar
  215. Walker, B. D., Flexner, C., Birch-Limberger, K., Fisher, L., Paradis, T. J., Aldovini, A., Young, R., Moss, B., and Schooley, R. T. Long-term culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type. Proc Natl Acad Sci USA 86: 9514–9518, 1989Google Scholar
  216. Wallny, H.-J. Untersuchungen zur Rolle der MHC-Klasse-I-Moleküle bei der Prozessierung von Nobenhistokompatibilitätsantigenen, Dissertation; Universität Tübingen, 1992Google Scholar
  217. Wallny, H.-J., Deres, K., Faath, S., Jung, G., Van Pel, A., Boon, T., and Rammensee, H.-G. Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int Immunol 4: 1085–1090, 1992Google Scholar
  218. Wei, M. L. and Cresswell, P. HLA-A2 molecules in an antigen processing mutant cell contain signal sequence derived peptides. Nature 356: 443–446, 1992Google Scholar
  219. Weiss, W. R., Mellouk, S., Houghten, R. A., Sedegah, M., Kumar, S., Good, M. F., Berzofsky, J. A., Miller, L. H., and Hoffmann, S. L. Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 171: 763–773, 1990Google Scholar
  220. White, H. D., Roeder, D. A., and Green, W. R. An immunodominant Kb-restricted peptide from the P15E transmembrane protein of endogenous ecotropic murine leukemia-virus (Mulv) Akr623 that restores susceptibility of a tumor line to anti-AKR Gross MULV cytotoxic T-lymphocytes. J Virol 68: 897–904, 1994Google Scholar
  221. Whitton, J. L., Tishon, A., Lewicki, H., Gebhard, J., Cook, T., Salvato, M., Joly, E., and Oldstone, M. B. A. Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol 63: 4303–4310, 1989Google Scholar
  222. Wölfel, T., Van Pel, A., Brichard, V., Schneider, J., Seliger, B., Zum Büschenfelde, K. H. M., and Boon, T. 2 tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T-Lymphocytes. Eur J Immunol 24: 759–764, 1994Google Scholar
  223. Wucherpfennig, K. W., Sette, A., Southwood, S., Oseroff, C., Matsui, M., Strominger, J. L., and Hafler, D. A. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 179: 279–290, 1994Google Scholar
  224. Yanagi, Y., Tishon, A., Lewicki, H., Cubitt, B. A., and Oldstone, M. B. A. Diversity of T cell receptors in virus specific cytotoxic T lymphocytes recognizing 3 distinct viral epitopes restricted by a single major histocompatibility complex molecule. J Virol 66: 2527–2531, 1992Google Scholar
  225. Zhang, Q. J., Gavioli, R., Klein, G., and Masucci, M. G. An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci USA 90: 2217–2221, 1993Google Scholar
  226. Zhang, W., Young, A. C. M., Imarai, M., Nathenson, S. G., and Sacchettini, J. C. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. Proc Natl Acad Sci USA 89: 8403–8407, 1992Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Hans-Georg Rammensee
    • 1
  • Thomas Friede
    • 1
  • Stefan Stevanović
    • 1
  1. 1.Abteilung Tumorvirus-Immunologie (0620)Deutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations