Skip to main content
Log in

The primary visual system of flatfish: an evolutionary perspective

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The retinal projections of two species of flatfish (Scophthalmus maximus, Scophthalmidae; Platichthys flesus, Pleuronectidae) were investigated by autoradiography and by a HRP technique. Contralateral projections to five hypothalamic centres (area optica preoptica ventralis, nucleus opticus preopticus parvocellularis posterior pars lateralis, n. suprachiasmaticus, n. opticus hypothalami ventromedialis and area optica hypothalami posterior), thirteen thalamo-pretectal centres (nucleus opticus dorsolateralis (partes medialis, ventralis and lateralis), n. opticus ventrolateralis, n. opticus commissurae posterioris (partes dorsalis and ventralis), n. opticus accessorius, n. geniculatus lateralis mesencephali, nn. opticus pretectalis dorsalis, medialis and ventralis and n. corticalis), three layers of the optic tectum (stratum opticum pars externa, stratum fibrosum et griseum superficiale, stratum album centrale), and a single target in the tegmentum (n. opticus tegmenti mesencephali dorsalis), were identified in both species. Interspecific variation of the contralateral visual projections is relatively small. Ipsilateral visual projections of fibres which recross the midline in the minor and transverse commissures were also identified; in S. maximus this ipsilateral contingent is poorly developed and concerns principally hypothalamic structures, while in P. flesus the ipsilateral projections are considerably more extensive and involve both hypothalamic and thalamo-pretectal primary visual centres. No differences in the projections from the fixed and from the migrated eye were observed in either species. The findings are discussed in the general context of the existing literature on the visual projections of teleosts, in an attempt to characterize the primary visual system of the Pleuronectiformes in an evolutionary context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOHp:

Area optica hypothalami posterior

AOPv:

Area optica preoptica ventralis

CER:

Cerebellum

Com. H:

Commissura horizontalis

Com. M:

Commissura minor

Com. T:

Commissura transversalis

Cp:

Commissura posterioris

FDtro:

Fasciculus dorsalis tractus optici

FHtro:

Fasciculus hypothalami tractus optici

FOCM:

Fasciculus opticus commissurae minor

FOCT:

Fasciculus opticus commissurae transversalis

FOHpv:

Fasciculus opticus hypothalami posterior pars ventralis

FVLtro:

Fasciculus ventrolateralis tractus optici

FVLtroi:

Fasciculus ventrolateralis optici ipsilateralis

FVMtro:

Fasciculus ventromedialis tractus optici

FVMtroi:

Fasciculus ventromedialis tractus optici ipsilateralis

FVtro:

Fasciculus ventralis tractus optici

Hyp:

Hypophysis cerebri

IS:

Interlobular sulcus

LO:

Lobus opticus

LOd:

Lobus opticus dorsalis

LOv:

Lobus opticus ventralis

LON:

left optic nerve

NC:

Nucleus corticalis

NDLi:

Nucleus diffusus lobi inferioris

NDM:

Nucleus dorsomedialis

NE:

Nucleus entopeduncularis

NG:

Nucleus glomerulosus

NGL:

Nucleus geniculatus lateralis

NGLM:

Nucleus geniculatus lateralis mesencephali

NOA:

Nucleus opticus accessorius

NOCPpd:

Nucleus opticus commissurae posterions pars dorsalis

NOCPpv:

Nucleus opticus commissurae posterioris pars ventralis

NODL:

Nucleus opticus dorsolateralis

NODLpl:

Nucleus opticus dorsolateralis pars lateralis

NODLpm:

Nucleus opticus dorsolateralis pars medialis

NODLpv:

Nucleus opticus dorsolateralis pars ventralis

NOHvl:

Nucleus opticus hypothalamicus ventrolateralis

NOPd:

Nucleus opticus pretectalis dorsalis

NOPL:

Nucleus opticus pretectalis lateralis

NOPm:

Nucleus opticus pretectalis medialis

NOPPpl:

Nucleus opticus preopticus parvocellularis posterior pars lateralis

NOPv:

Nucleus opticus pretectalis ventralis

NOTMd:

Nucleus opticus tegmenti mesencephali dorsalis

NOTMdl:

Nucleus opticus tegmenti mesencephali dorsalis pars lateralis

NOTMdm:

Nucleus opticus tegmenti mesencephali dorsalis pars medialis

NOVL:

Nucleus opticus ventrolateralis

NPG:

Nucleus preglomerulosus

NPMg:

Nucleus preopticus magnocellularis

NPP:

Nucleus preopticus parvocellularis posterior

NPPa:

Nucleus preopticus parvocellularis anterior

NPs:

Nucleus pretectalis superficialis

NRL:

Nucleus recessus lateralis

NSC:

Nucleus suprachiasmaticus

NVM:

Nucleus ventromedialis

RON:

right optic nerve

sac:

stratum album centrale

sfgs:

stratum fibrosum et griseum superficiale

sfpv:

stratum fibrosum periventriculare

sgc:

stratum griseum centrale

sgpv:

stratum griseum periventriculare

sm:

stratum marginale

soe:

stratum opticum pars externa

soi:

stratum opticum pars interna

SV:

saccus vascularis

Tel:

telencephalon

TL:

Torus longitudinalis

TM:

Tegmentum mesencephali

TO:

Tectum opticum

TROA:

Tractus opticus accessorius

TROdm:

Tractus opticus dorsomedialis

TROdmd:

Tractus opticus dorsomedialis dorsalis

TROdme:

Tractus opticus dorsomedialis pars externa

TROdmi:

Tractus opticus dorsomedialis pars interna

TROdmv:

Tractus opticus dorsomedialis ventralis

TROdmvd:

Tractus opticus dorsomedialis ventralis pars dorsalis

TROdmvv:

Tractus opticus dorsomedialis ventralis pars ventralis

TROM:

Tractus opticus marginalis

TROvl:

Tractus opticus ventrolateralis

TROvld:

Tractus opticus ventrolateralis dorsalis

TROvle:

Tractus opticus ventrolateralis pars externa

TROvli:

Tractus opticus ventrolateralis pars interna

TROvldd:

Tractus opticus ventrolateralis dorsalis pars dorsalis

TROvldv:

Tractus opticus ventrolateralis dorsalis pars ventralis

TROvlv:

Tractus opticus ventrolateralis pars ventralis

TS:

Torus semicircularis

v:

ventricle

VC:

Valvula cerebelli

I:

Nervus olfactorius

II:

Nervus opticus

V:

Nervus trigeminus

VII:

Nervus facialis

VIII:

Nervus octavolateralis

IX:

Nervus glossopharyngeus

X:

Nervus vagus

References

  • Anders JJ, Hibbard E (1974) The optic system of the teleost Cichlasoma biocellatum. J Comp Neurol 158:145–154

    Google Scholar 

  • Bazer GT, Ebbesson SOE (1987) Retinal projections in the chain pickerel (Esox niger Lesueur). Cell Tissue Res 248:227–229

    Google Scholar 

  • Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304

    Google Scholar 

  • Braford MR, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davies RE, Northcutt RG (eds) Fish neurobiology 2, University of Michigan Press, Ann Arbor, pp 117–164

    Google Scholar 

  • Briñon JG, Medina M, Arévalo R, Alonso JR, Lara JM, Aijón J (1992) Volumetric analysis of the telencephalon and tectum during metamorphosis in a flatfish. Brain Behav Evol (in press)

  • Butler AB, Saidel WM (1991) Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analysis and primary visual pathways. Brain Behav Evol 38:127–153

    Google Scholar 

  • Butler AB, Wullimann MF, Northcutt RG (1991) Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain Behav Evol 38:92–114

    Google Scholar 

  • Campbell CBG, Ebbesson SOE (1969) The optic system of a teleost, Holocentrus, re-examined. Brain Behav Evol 2:415–430

    Google Scholar 

  • Chabanaud P (1938) Contribution à la morphologie et la systématique des téléostéens dissymétriques. Arch Mus Nat Hist Nat 6:59–139

    Google Scholar 

  • Chabanaud P (1940) Contribution à la morphologie des Cynoglossidae (Teleostei, Pleuronectoidea, Soleiformes). Bull Mus Nat Hist Nat 12:182–191

    Google Scholar 

  • Collin SP (1989) Anterograde labelling from the optic nerve reveals multiple central targets in the teleost, Lethrinus chrysostomus (Perciformes). Cell Tissue Res 256:327–335

    Google Scholar 

  • Corujo A, Anadón R (1990) The development of the diencephalon of the rainbow trout (Salmo gairdneri Richardson). J Hirnforsch 31:669–680

    Google Scholar 

  • Easter SS, Pamela JR, Heckenlively D (1974) Horizontal compensatory eye movements in goldfish (Carassius auratus). I. Normal animal. J Comp Physiol 92:23–35

    Google Scholar 

  • Ebbesson SOE (1968) Retinal projections in two teleost fishes (Opsanus tau and Gymnothorax funebris). An experimental study with silver impregnation methods. Brain Behav Evol 1:134–154

    Google Scholar 

  • Ebbesson SOE, Ito H (1980) Bilateral retinal projections in the black piranah (Serrasalmus niger). Cell Tissue Res 213:483–495

    Google Scholar 

  • Ebbesson SOE, O'Donnell D (1980) Retinal projections in the electric catfish (Malapterurus electricus). Cell Tissue Res 213:497–503

    Google Scholar 

  • Ebbesson SOE, Bazer GT, Reynolds JB, Bailey RP (1988) Retinal projections in sockeye salmon smolts (Onchorhynchus nerka). Cell Tissue Res 252:215–218

    Google Scholar 

  • Echteler SM (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551

    Google Scholar 

  • Echteler SM, Saidel WM (1981) Forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science 212:683–685

    Google Scholar 

  • Ekström P (1982) Retinofugal projections in the eel, Anguilla anguilla L. (Teleostei), visualized by the cobalt-filling technique. Cell Tissue Res 225:507–524

    Google Scholar 

  • Ekström P (1984) Central neural connections of the pineal organ and retina in the teleost Gasterosteus aculeatus L. J Comp Neurol 226:321–335

    Google Scholar 

  • Fernald RD (1982) Retinal projections in the African cichlid fish, Haplochromis burtoni. J Comp Neurol 206:379–389

    Google Scholar 

  • Finger TE (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210:671–673

    Google Scholar 

  • Finger TE, Karten HJ (1978) The accessory optic system in teleosts. Brain Res 153:144–149

    Google Scholar 

  • Finger TE, Tong SL (1984) Central organization of the eighth nerve and mechanosensory lateral line systems in the brainstem of Ictalurid catfish. J Comp Neurol 229:129–151

    Google Scholar 

  • Fite KV (1985) Pretectal and accessory-optic visual nuclei offish, amphibia and reptiles: theme and variations. Brain Behav Evol 26:71–90

    Google Scholar 

  • Fraley SM, Sharma SC (1984) Topography of retinal axons in the diencephalon of goldfish. Cell Tissue Res 238:529–538

    Google Scholar 

  • Gulley RL, Cochran M, Ebbesson SOE (1975) The visual connections of the adult flatfish, Achirus lineatus. J Comp Neurol 162:309–320

    Google Scholar 

  • Ito H, Kishida R (1978) Telencephalic afferent neurons identified by the retrograde HRP method in the carp diencephalon. Brain Res 149:211–215

    Google Scholar 

  • Ito H, Vanegas H, Murakami T, Morita Y (1984) Diameters and terminal patterns of retinofugal axons in their target areas: an HRP study in two teleosts (Sebastiscus and Navodon). J Comp Neurol 230:179–197

    Google Scholar 

  • Jansen J (1929) A note on the optic tract in teleosts. Proc Kon Ned Akad Wet 32:1104–1117

    Google Scholar 

  • Knudsen EI (1967) Midbrain responses to electroreceptive input in catfish. Evidence of orientation preferences and somatotopic organization. J Comp Physiol 106:51–67

    Google Scholar 

  • Knudsen EI (1977a) Functional organization in electroreceptive midbrain of the catfish. J Neurophysiol 41:350–364

    Google Scholar 

  • Knudsen EI (1977b) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–432

    Google Scholar 

  • Landreth GE, Neale EA, Neale JH, Duff RS, Braford MR Jr, Northcutt RG, Agranoff BW (1975) Evolution of [3H] proline for radioautographic tracing of axonal projections in the teleost visual system. Brain Res 91:25–42

    Google Scholar 

  • Lara JM, Repérant J, Medina M, Ward R, Miceli D (1990) Regeneration of the retinotectal system in a flatfish, Scophthalmus maximus L. Exp Biol 48:313–318

    Google Scholar 

  • Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197

    Google Scholar 

  • Lázár G, Libouban S, Szabo T (1984) The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, Gnathonemus petersii. J Comp Neurol 230:1–12

    Google Scholar 

  • Lázár G, Tóth P, Szabo T (1987) Retinal projections in gymnotid fishes. J Hirnforsch 28:13–26

    Google Scholar 

  • Lemire M, Repérant J (1976) Analyse radioautographique des projections visuelles primaires chez la Truite Salmo irideus Gibb (comparaison avec quelques autres Téléostéens d'eau douce). CR Acad Sci Paris D 283:951–954

    Google Scholar 

  • Luckenbill-Edds E, Sharma SC (1977) Retinotectal projection of the adult winter flounder (Pseudopleuronectes americanus). J Comp Neurol 173:307–318

    Google Scholar 

  • Meader RG (1934) The optic system of the teleost, Holocentrus. I. The primary optic pathways and the corpus geniculatum complex. J Comp Neurol 60:361–407

    Google Scholar 

  • Medina M, Repérant J, Rio JP (1987) Analyse radioautographique des projections visuelles chez le Poisson plat Scophthalmus maximus L. C R Acad Sci Paris III 305:587–590

    Google Scholar 

  • Medina M, Le Belle N, Repérant J, Rio JP, Ward R (1990) An experimental study of the retinal projections of the European eel (Anguilla anguilla), carried out at the catadromic migratory silver stage. J Hirnforsch 31:467–480

    Google Scholar 

  • Meyer DE, Ebbesson SOE (1981) Retinofugal and retinopetal connections in the upside-down catfish (Synodontis nigriventris). Cell Tissue Res 218:289–301

    Google Scholar 

  • Murray M (1974) Axonal transport in the asymmetric optic axons of flatfish. Exp Neurol 42:636–646

    Google Scholar 

  • Nelson JS (1976) Fishes of the world, 2nd ed. New York, Wiley, 416 pp

    Google Scholar 

  • Neale JH, Neale EA, Agranoff BW (1972) Radioautography of the optic tectum of the goldfish after intraocular injection of [3H]-proline. Science 176:407–410

    Google Scholar 

  • Northcutt RG (1975) Retinofugal pathways in the bowfin Amia calva Linnaeus. Proc Int Congr Anat 10:190

    Google Scholar 

  • Northcutt RG, Braford MR (1984) Some efferent connections of the superficial pretectum in the goldfish. Brain Res 296:181–184

    Google Scholar 

  • Northcutt RG, Butler AB (1976) Retinofugal pathways in the longnose gar, Lepisosteus osseus (Linnaeus). J Comp Neurol 166:1–16

    Google Scholar 

  • Northcutt RG, Butler AB (1991) Retinofugal and retinopetal projections in the green sunfish, Lepomis cyanellus. Brain Behav Evol 37:333–354

    Google Scholar 

  • Northcutt RG, Wullimann MF (1988) The visual system in teleost fishes: morphological patterns and trends. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York Berlin Heidelberg, pp 512–552

    Google Scholar 

  • Page CH (1970) Electrophysiological study of auditory responses in the goldfish brain. J Neurophysiol 33:116–128

    Google Scholar 

  • Peyrichoux J, Weidner C, Repérant J, Miceli D (1977) An experimental study of the visual system of cyprinid fish using the HRP method. Brain Res 130:531–537

    Google Scholar 

  • Pinganaud G (1980) Le développement du système visuel primaire de Salmo irideus. Arch Anat Microsc Morphol Exp 69:215–231

    Google Scholar 

  • Pinganaud G, Clairambault P (1979) The visual system of the trout Salmo irideus Gibb. A degeneration and radioautographic study. J Hirnforsch 20:413–431

    Google Scholar 

  • Prasada Rao PD, Sharma SC (1982) Retinofugal pathways in juvenile and adult channel catfish, Ictalurus (Ameiurus) punctatus: an HRP and autoradiographic study. J Comp Neurol 210:37–48

    Google Scholar 

  • Presson J, Fernald RD, Max M (1985) The organization of retinal projections to the diencephalon and pretectum in the cichlid fish, Haplochromis burtoni. J Comp Neurol 235:360–374

    Google Scholar 

  • Rajendra Babu P, Prasada Rao PD (1988) Retinal projections in the catfish, Mystus vittatus (Bloch) as revealed by tracer studies with horseradish peroxidase. Cell Tissue Res 253:259–262

    Google Scholar 

  • Repérant J, Lemire M (1976) Retinal projections in cyprinid fishes: A degeneration and radioautographic study. Brain Behav Evol 13:34–57

    Google Scholar 

  • Repérant J, Lemire M, Miceli D, Peyrichoux J (1976) A radioautographic study of the visual system in fresh-water teleosts following intraocular injection of tritiated fucose and proline. Brain Res 118:123–131

    Google Scholar 

  • Repérant J, Rio JP, Miceli D, Amouzou M, Peyrichoux J (1981) The retinofugal pathways in a primitive African bony fish, Polypterus senegalus (Cuvier 1829). Brain Res 217:225–243

    Google Scholar 

  • Repérant J, Vesselkin NP, Ermakova TV, Rustamov EK, Rio JP, Palatnikov GK, Peyrichoux J, Kasimov RV (1982) The retinofugal pathways in a primitive actinopterygian, the chondrostean Acipenser güldenstädti. An experimental study using degeneration, radioautographic and HRP methods. Brain Res 251:1–23

    Google Scholar 

  • Roth RL (1969) Optic tract projections in representatives of two fresh-water teleost families. Anat Rec 163:253–254

    Google Scholar 

  • Rowe JS, Beauchamp RD (1982) Visual responses of nucleus corticalis neurons in the perciform teleost, Northern rock bass (Ambloplites rupestris rupestris). Brain Res 236:205–209

    Google Scholar 

  • Rusoff AC (1984) Paths of axons in the visual system of perciform fish and implications of these paths for rules governing axonal growth. J Neurosci 4:1414–1428

    Google Scholar 

  • Sakamoto N, Ito H (1982) Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. J Comp Neurol 205:291–298

    Google Scholar 

  • Sas E, Maler L (1986) Retinofugal projections in a weakly electric gymnotid fish (Apteronotus leptorhynchus). Neuroscience 18:247–259

    Google Scholar 

  • Schmidt JT (1979) The laminar organization of optic nerve fibers in the tectum of gold fish. Proc R Soc Lond Biol Sci 205:287–306

    Google Scholar 

  • Scholes JH (1979) Nerve fibre topography in the retinal projection to the tectum. Nature 278:620–624

    Google Scholar 

  • Schwassmann HO, Kruger L (1968) Anatomy of visual centers in teleosts. In: Ingle D (ed) The Central nervous system and fish behavior. The University of Chicago Press, Chicago, pp 3–16

    Google Scholar 

  • Sharma SC (1972) The retinal projections in the goldfish: an experimental study. Brain Res 39:213–223

    Google Scholar 

  • Springer AD (1981) Normal and abnormal retinal projections following the crush of one optic nerve in goldfish (Carassius auratus). J Comp Neurol 199:87–95

    Google Scholar 

  • Springer AD, Gaffney GE (1981) Retinal projections in the goldfish: a study using cobaltous-lysine. J Comp Neurol 203:401–424

    Google Scholar 

  • Springer AD, Landreth GE (1977) Direct ipsilateral retinal projections in goldfish (Carassius auratus). Brain Res 124:533–537

    Google Scholar 

  • Springer AD, Mednick AS (1985) Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus. J Comp Neurol 236:179–196

    Google Scholar 

  • Streidter GF (1990) The diencephalon of the channel catfish, Ictalurus punctatus. II. Retinal, tectal, cerebellar, and telencephalic connections. Brain Behav Evol 36:355–377

    Google Scholar 

  • Streidter GF, Northcutt RG (1989) Two distinct visual pathways through the superficial pretectum in a percomorph teleost. J Comp Neurol 283:342–354

    Google Scholar 

  • Tapp RL (1973) The structure of the optic nerve of the teleost: Eugerres plumieri. J Comp Neurol 150:239–252

    Google Scholar 

  • Tapp RL (1974) Axon numbers and distribution, myelin thickness, and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugerres plumieri. J Comp Neurol 153:267–274

    Google Scholar 

  • Tuge H, Uchihashi K, Shimamura H (1968) An atlas of the brains of fishes of Japan. Tsukiji Shokan, Tokyo, 240 pp

    Google Scholar 

  • Vanegas H, Ebbesson SOE (1973) Retinal projections in the perchlike teleost Eugerres plumieri. J Comp Neurol 151:331–358

    Google Scholar 

  • Vanegas H, Ito H (1983) Morphological aspects of the teleostean visual system: a review. Brain Res Rev 6:117–137

    Google Scholar 

  • Vesselkin NP, Khodorskaya NA (1984) Les afférences du cervelet chez la carpe. Ve Symp Organ Struct Fonet Cer, Acad Sci Arménie, 22–29

  • Von Bartheld CS, Meyer DL (1987) Comparative neurology of the optic tectum in ray-finned fishes: patterns of lamination formed by retinotectal projections. Brain Res 420:277–288

    Google Scholar 

  • Von Bartheld CS, Meyer DL (1988) Retinofugal and retinopetal projections in the teleost Charma micropeltes (Channiformes). Cell Tissue Res 251:651–663

    Google Scholar 

  • Voneida TJ, Sligar CM (1976) A comparative neuroanatomic study of retinal projections in two fishes: Astyanax hubbsi (the blind cave fish) and Astyanax mexicanus. J Comp Neurol 165:89–106

    Google Scholar 

  • Wallenberg A (1934) Einige Notizen zur Kenntnis vom Bau des Zentralnervensystems der Selachier, Teleostier und Vögel. Psychiatr Neurol 3/4:561–571

    Google Scholar 

  • Wilm C, Fritzsch B (1990) Ipsilateral retinofugal projections in a percomorph bony fish: their experimental induction, specificity and maintenance. Brain Behav Evol 36:271–299

    Google Scholar 

  • Wolf de FA, Schellart NAM, Hoogland PV (1983) Octavolateral projections to the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 38:209–213

    Google Scholar 

  • Wullimann MF, Northcutt RG (1988) Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav Evol 32:293–316

    Google Scholar 

  • Wullimann MF, Hofmann MH, Meyer DL (1991) Histochemical, connectional and cytoarchitectonic evidence for a secondary reduction of the pretectum in the European eel Anguilla anguilla: a case of parallel evolution. Brain Behav Evol 38:290–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, M., Repérant, J., Ward, R. et al. The primary visual system of flatfish: an evolutionary perspective. Anat Embryol 187, 167–191 (1993). https://doi.org/10.1007/BF00171749

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171749

Key words

Navigation