Skip to main content
Log in

Ultra low frequency waves in the magnetosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The behaviour of continuous pulsations pc 2–5 observed on the ground has been known for some time. They seldom occur at night, their amplitudes generally increase towards the auroral zones and the sense of rotation of their polarisation often agrees with surface waves on the magnetopause. Recently ULF sonagrams for middle latitudes have shown systematic behaviour and dominant periods. Theoretical study of normal modes for symmetrical models is also well established. If the wave depends on longitude φ like eimφ, modes with large m are quasi-transverse and these are likely to be excited and will be emphasised.

The Kelvin-Helmholtz instability has recently been studied in a general formulation. For given fields and plasma properties on both sides of the boundary, a plot of critical wind speed against the direction of the wave fronts shows a cusp, meaning that for most directions of the wind the onset of instability will correspond to the cusp and the nature of the waves can be predicted from this. Almost circularly polarised waves are predicted confirming an earlier heuristic suggestion.

Magnetic data from Explorer 33 shows rather irregular disturbance near the magnetopause, but an integration designed to show the sense of rotation of the polarisation shows clear agreement. The disturbance outside the magnetopause also shows the predicted polarisation, indicating that a substantial part of it must be due to surface waves, whereas previously it was believed to be the turbulence of the magnetosheath.

Bounce resonance has also been invoked to excite ULF waves, particularly those observed at the geostationary orbit, which may also correspond to pg at the ground. They are remarkably regular and quite strictly transverse, suggesting large m. Energetic particles may then see a higher frequency as a result of their drift. A simple picture of the exchange of energy is obtained using a frame rotating with the wave and it is seen that the wave can be driven by a spatial gradient in the energetic particles. The most important mechanism is due to the tilting of the field lines and the growth rate can be large. The reflection by the ionosphere requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, K. A., Binsack, J. H., and Fairfield, D. H.: 1968, J. Geophys. Res. 73, 2371.

    Google Scholar 

  • Annexstad, J. O. and Wilson, C. R.: 1968, J. Geophys. Res. 73, 1805.

    Google Scholar 

  • Atkinson, G. and Watanabe, T.: 1966, Earth Planet. Sci. Lett. 1, 89.

    Google Scholar 

  • Cahill, L. J., Jr. and Amazeen, P. G.: 1963, J. Geophys. Res. 68, 1835.

    Google Scholar 

  • Campbell, W. H.: 1968, in Physics of Geomagnetic Phenomena (ed. by S. Matsushita and W. H. Campbell), Academic Press, New York, p. 821.

  • Cummings, W. D. and Coleman, P. J., Jr.: 1968, J. Geophys. Res. 73, 5699.

    Google Scholar 

  • Cummings, W. D., O'Sullivan, R. J., and Coleman, P. J., Jr.: 1969, J. Geophys. Res. 74, 778.

    Google Scholar 

  • Dungey, J. W.: 1963, in Proc. of the International Conference on the Ionosphere, Institute of Physics and the Physical Society, London, p. 231.

    Google Scholar 

  • Dungey, J. W.: 1965, Space Sci. Rev. 4, 199.

    Google Scholar 

  • Dungey, J. W.: 1968, in Physics of Geomagnetic Phenomena (ed. by S. Matsushita and W. H. Campbell), Academic Press, New York, p. 913.

  • Fairfield, D. H. and Ness, N. F.: 1967, J. Geophys. Res. 72, 2379.

    Google Scholar 

  • Greenstadt, E. W., Inonye, G. T., Green, I. M., and Judge, D. L.; 1967, J. Geophys. Res. 72, 3855.

    Google Scholar 

  • Herron, T. J.: 1966, J. Geophys. Res. 71, 871.

    Google Scholar 

  • Hirasawa, T., Oguti, T., and Nagata, T.: 1965, Rept. Ionosph. Space Res. Japan 19, 452.

    Google Scholar 

  • Hruska, A.: 1968, Planet. Space Sci. 16, 1305.

    Google Scholar 

  • Hyde, R. S.: 1967, Univ. of New Hampshire Report, UNH-67-6.

  • Jacobs, J. A. and Sinno, K.: 1960, J. Geophys. Res. 65, 107.

    Google Scholar 

  • Judge, D. L. and Coleman, P. J., Jr.: 1962, J. Geophys. Res. 67, 5071.

    Google Scholar 

  • Kahalas, S. L.: 1969, Planet. Space Sci. 17, 1281.

    Google Scholar 

  • Kato, Y. and Utsumi, T.: 1964, Rept. Ionosph. Space Res. Japan 18, 214.

    Google Scholar 

  • Kitamura, T.: 1963, Sept. Ionosph. Space Res. Japan 17, 67.

    Google Scholar 

  • Kaufmann, R. L. and Konradi, A.: 1968, Goddard Space Flight Center Report, X-612-448.

  • Lezniak, T. W. and Winkler, J. R.: 1968, J. Geophys. Res. 73, 5733.

    Google Scholar 

  • Mainstone, J. S.: 1966, preprint.

  • Mainstone, J. S.: 1967, Nature 215, 1048.

    Google Scholar 

  • Mainstone, J. S.: 1968, Presented at Micropulsation Symposium, Newcastle, N.S.W., Australia.

  • McNicol, R. W. E. and Mainstone, J. S.: 1963, Austral. J. Phys. 16, 507.

    Google Scholar 

  • Nagata, T., Kokubun, S., and Iijima, T.: 1963, J. Geophys. Res. 68, 4621.

    Google Scholar 

  • Patel, V. L.: 1965, Planet. Space Sci. 13, 485.

    Google Scholar 

  • Patel, V. L.: 1966, Earth Planet. Sci. Lett. 1, 282.

    Google Scholar 

  • Patel, V. L. and Cahill, L. J., Jr.: 1964, Phys. Rev. Lett. 12, 213.

    Google Scholar 

  • Patel, V. L., Cahill, L. J., Jr. and Dessler, A. J.: 1967, J. Geophys. Res. 72, 426.

    Google Scholar 

  • Radoski, H. R. and McClay, J. F.: 1967, J. Geophys. Res. 72, 4899.

    Google Scholar 

  • Sonett, C. P.: 1963, J. Geophys. Res. 68, 6371.

    Google Scholar 

  • Southwood, D. J.: 1968, Planet. Space Sci. 16, 587.

    Google Scholar 

  • Southwood, D. J., Dungey, J. W., and Etherington, R. J.: 1969, Planet. Space Sci. 17, 349.

    Google Scholar 

  • Sugiura, M. and Wilson, C. R.: 1964, J. Geophys. Res. 69, 1211.

    Google Scholar 

  • Troitskaya, V. A.: 1967, in Solar Terrestrial Physics, Academic Press, London, p. 213.

    Google Scholar 

  • Van-Chi, Fam, Yanowskiy, B. M., Kovtun, A. A., Raspopov, O. M., Troitskaya, V. A., and Schlich, R.: 1968, Geomag. and Aeron. 8, 94. (In English).

    Google Scholar 

  • Voelker, H.: 1968, in Birkeland Symposium on Aurora and Magnetic Storms (ed. by A. Egeland and J. Holtet), Centre National de la Recherche Scientifique, p. 257.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dungey, J.W., Southwood, D.J. Ultra low frequency waves in the magnetosphere. Space Sci Rev 10, 672–688 (1970). https://doi.org/10.1007/BF00171551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171551

Keywords

Navigation