Skip to main content
Log in

Modelling human power and endurance

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A generalised three component hydraulic model has been proposed to represent the human bioenergetic processes relating internal energy stores to performance during exercise, and into recovery. Further development of the model allows testable predictions to be made. In particular in this paper I examine certain hypotheses of chemical fuel shortage as a subgroup of the potential causes of fatigue, and their implications for maximal power and for endurance. The assumption that the limitation to sustainable power is direct proportionality to the glycogen store remaining, appears the most feasible. Based on this assumption, equations for the decline in maximum attainable power over time, the endurance at fixed workrates and the endurance at incremental tests (as a function of the increment slope) are obtained. Using published data for fit males, the maximum exertable power declines after about 6 s at 972 W to very low levels after about 2 min. For constant powers selected between 208 and 927 W, endurance declines from ad infinitum to only 6 s. Endurance at \(\dot V_{O_2 \max } \) is predicted to be about 9 min. For incremental exercise tests of slope ranging from 30 W/min to 60 W/min, endurance lessens from 14 to 9 min. In these tests the anaerobic threshold is reached in times between 6 and 3 min. Although the power at termination of a test increases with incremental slope, terminal oxygen consumption is effectively constant. Almost all these model predictions are observed to correspond well with published experimental findings. These results suggest that the model can be used to represent an adequate overview of the operation of the human bioenergetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen, E., Döbeln, W. v., Nielsen, M.: Blood lactate and oxygen debt after exhaustive work at different oxygen tensions. Acta Physiol. Scand. 15, 57–62 (1948)

    Google Scholar 

  • Bang, O.: The lactate content of the blood during and after muscular exercise in man. Skand. Archiv. fur Physiol. [Suppl. 10] 74, 51–82 (1936)

    Google Scholar 

  • Brooks, G. A., Fahey, T. D.: Exercise physiology. New York: Macmillan 1985

    Google Scholar 

  • Buchfuhrer, M. J., Hansen, J. E., Robinson, T. E., Sue, D. Y., Wasserman, K., Whipp, B. J.: Optimising the exercise protocol for cardiopulmonary assessment. J. Appl. Physiol. 55, 1558–1564 (1983)

    Google Scholar 

  • Cheetham, M. E., Boobis, L. H., Brooks, S., Williams, C.: Human muscle metabolism during sprint running. J. Appl. Physiol. 61, 54–60 (1986)

    Google Scholar 

  • Clarke, D. H.: Sex difference in strength and fatigability. Res. Q. Exerc. Sport 57, 144–149 (1986)

    Google Scholar 

  • Conlee, R. K.: Muscle glycogen and exercise endurance: a twenty-year perspective. In: Pandolf, K. B. (ed.) Exercise and Sports Science Reviews, pp. 7–28. New York: Macmillan 1986

    Google Scholar 

  • Costill, D. L., Thomason, H., Roberts, E.: Fractional utilisation of aerobic capacity during distance running. Med. Sci. Sports 5, 248–252 (1973)

    Google Scholar 

  • Davis, J. A., Whipp, B. J., Lamarra, N., Huntsman, D. J., Frank, M. H., Wasserman, K.: Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med. Sci. Sports Exer. 14, 339–343 (1982)

    Google Scholar 

  • Di Prampero, P. E.: Energetics of muscular exercise. Rev. Physiol. Biochem. Pharmacol. 89, 143–222 (1981)

    Google Scholar 

  • Gleser, M. A., Vogel, J. A.: Endurance capacity for prolonged exercise on the bicycle ergometer. J. Appl. Physiol. 34, 438–442 (1973)

    Google Scholar 

  • Golomb, M., Shanks, M.: Elements of ordinary differential equations. New York: McGraw-Hill 1950

    Google Scholar 

  • Green, H., Patla, A., Jones, S., Ball-Burnett, M.: Fatigue and carbohydrate availability—Central or peripheral effect? Med. Sci. Sports Exerc. 19 (2), 576 (1987)

    Google Scholar 

  • Harman, E. A., Knuttgen, H. G., Frykman, P. N., Patton, J. F.: Exercise endurance time as a function of percent maximal power production. Med. Sci. Sports Exer., 19, 480–485 (1987)

    Google Scholar 

  • Hirvonen, J., Rehunen, S., Rusko, H., Harkonen, M.: Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur. J. Appl. Physiol. 56, 253–259 (1987)

    Google Scholar 

  • Hooper, D., Miller, R., Layzer, R., Giannini, D., Milner-Brown, H. S., Koretsky, A., Weiner, M.: Correlation between high energy phosphates and fatigue in human muscle. Soc. Mag. Res. Med. 1, 481 (1985)

    Google Scholar 

  • Hughson, R. L., Green, H. J.: Blood acid-base and lactate relationships studied by ramp work tests. Med. Sci. Sports Exerc. 14, 297–302 (1982)

    Google Scholar 

  • Ikuta, K., Ikai, M.: Study on the development of maximum anaerobic power in man with bicycle ergometer. Res. J. Phys. Ed. (Japan) 17, 151–157 (1972)

    Google Scholar 

  • Jacobs, L, Tesch, P. A., Bar-Or, O., Karlsson, J., Dotan, R.: Lactate in human skeletal muscle after 10 and 30 s of supramaximal exercise. J. Appl. Physiol. 55, 365–367 (1983)

    Google Scholar 

  • Jones, N. L., McCartney, N., Graham, T., Spriet, L. L., Kowalchuk, J. M., Heigenhauser, G. J. F., Sutton, J. R.: Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J. Appl. Physiol. 59, 132–136 (1985)

    Google Scholar 

  • Karlsson, J.: Lactate and phosphagen concentrations in working muscle of man. Acta. Physiol. Scand. [Suppl.] 358, 1–72 (1971)

    Google Scholar 

  • Lamb, D. R.: Physiology of exercise: responses and adaptations, 2nd edn. New York: Macmillan 1984

    Google Scholar 

  • Margaria, R., Aghemo, P., Rovelli, E.: Measurement of muscular power (anaerobic) in man. J. Appl. Physiol. 21, 1662–1664 (1966)

    Google Scholar 

  • Margaria, R., Di Prampero, P. E., Aghemo, P., Deverenco, P., Mariani, M.: Effect of a steady state exercise on maximal anaerobic power in man. J. Appl. Physiol. 30, 885–889 (1971)

    Google Scholar 

  • Maron, M. B., Horvath, S. M., Wilkerson, J. E., Gliner, J. A.: Oxygen uptake measurements during competitive marathon running. J. Appl. Physiol. 40, 836–838 (1987)

    Google Scholar 

  • Maughan, R. J., Leiper, J. B.: Aerobic capacity and fractional utilisation of aerobic capacity in elite and non-elite male and female marathon runners. Eur. J. Appl. Physiol. 52, 80–87 (1983)

    Google Scholar 

  • McCartney, N., Heigenhauser, G. F., Jones, N. L.: Power output and fatigue of human muscle in maximal cycling exercise. J. Appl. Physiol. 55, 218–224 (1983)

    Google Scholar 

  • McCartney, N., Spriet, L. L., Heigenhauser, G. J. F., Kowalchuk, J. M., Sutton, J. R., Jones, N. L., Muscle power and metabolism in maximal intermittent exercise. J. Appl. Physiol. 60, 1164–1169 (1986)

    Google Scholar 

  • Miller, R. G., Giannini, D., Milner-Brown, H. S., Layzer, R. B., Koretsky, A. P., Hooper, D., Wiener, M. W.: Effects of fatiguing exercise on high-energy phosphates, force and EMG: Evidence for three phases of recovery. Muscle Nerve 10, 810–821 (1987)

    Google Scholar 

  • Morton, R. H.: A three component model of human bioenergetics. J. Math. Biol. 24, 451–466 (1986a)

    Google Scholar 

  • Morton R. H.: On a model of human bioenergetics II: Maximal power and endurance. Eur. J. Appl. Physiol. 55, 413–318 (1986b)

    Google Scholar 

  • Morton, R. H.: A simple model to link hemodynamics, fatigue and endurance in static work. J. Biomech., 20, 641–644 (1987)

    Google Scholar 

  • Murase, M., Hoshikawa, T., Yasuda, N., Ikegami, Y., Matsui, H.: Analysis of the changes in progressive speed during 100-m dash. In: Komi, P. V. (ed.) Biomechanics, vol. V-B, pp. 200–207. Baltimore: University Park Press 1976

    Google Scholar 

  • Newsholme, E. A.: Application of principles of metabolic control to the problem of metabolic limitations in sprinting, middle-distance, and marathon running. Int. J. Sports Med. 7 [Suppl.], 66–70 (1986)

    Google Scholar 

  • Porter, R., Whelan, J. (eds.) Human muscle fatigue: Physiological mechanisms. London: Pitman Medical 1981

    Google Scholar 

  • Sargeant, A. J., Dolan, P.: Effect of prior exercise on maximal short-term power output in humans. J. Appl. Physiol. 63, 1475–1480 (1987)

    Google Scholar 

  • Shephard, R. J.: Tests of maximum oxygen intake: A critical review. Sports Med. 1, 99–124 (1984)

    Google Scholar 

  • Tesch, P.: Muscle fatigue in man with special reference to lactate accumulation during short term intense exercise. Acta Physiol. Scand. [Suppl.] 480, 1–40 (1980)

    Google Scholar 

  • Vandewalle, H., Peres, G., Monod, H.: Standard anaerobic exercise tests. Sports Med. 4, 268–289 (1987)

    Google Scholar 

  • Wells, C. L., Hecht, L. H., Krahenbuhl, G. S.: Physical characteristics and oxygen utilisation of male and female marathon runners. Res. Q. Exerc. Sport 52, 281–285 (1981)

    Google Scholar 

  • Whipp, B. J., Davis, J. A., Torres, F., Wasserman, K.: A test to determine parameters of aerobic function during exercise. J. Appl. Physiol. 50, 217–221 (1981)

    Google Scholar 

  • Wilkie, D. R.: Man as a source of mechanical power. Ergonomics 1, 1–8 (1960)

    Google Scholar 

  • Wilkie, D. R.: Equations describing power output by humans as a function of duration of exercise. In: Cerretelli, P., Whipp, B. J. (eds.) Exercise, bioenergetis and gas exchange, pp. 75–80. Amsterdam: Elsevier/North Holland Bio-medical Press 1980

    Google Scholar 

  • Wilkie, D. R.: Shortage of chemical fuel as a cause of fatigue: Studies by nuclear magnetic resonance and bicycle ergometry. In: Porter, R., Whelan, J. (eds.) Human muscle fatigue: Physiological mechanisms, pp. 102–109. London: Pitman Medical 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, R.H. Modelling human power and endurance. J. Math. Biol. 28, 49–64 (1990). https://doi.org/10.1007/BF00171518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171518

Key words

Navigation