Skip to main content
Log in

A comparative study of scatter correction methods for scintigraphic images

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Phantom studies have demonstrated that factor analysis of medical image sequences using target apex-seeking (FAMIS-TAS) applied to spectral scintigraphic image sequences is an efficient adaptive scatter correction method. We assessed the improvement in quality of clinical images using FAMIS-TAS as compared with two other scatter correction techniques: conventional 20% photopeak window (PW) and scatter window subtraction (SWS). Thirty normal technetium-99m hydroxymethylene diphosphonate bone scans were processed. Bone to soft tissue contrasts and signal-to-noise and contrast-to-noise ratios were measured. The overall image quality was evaluated using an observer testing questionnaire submitted to four physicians. Quantitative parameters showed that FAMIS-TAS images displayed the best bone to soft tissue contrasts and contrast-tonoise ratios, but the lowest signal-to-noise ratios. PW images presented the lowest contrasts and contrast-tonoise ratios, and the highest signal-to-noise ratios. SWS gave intermediate results. According to the observer testing results, PW images showed the lowest bone to soft tissue contrasts and the highest signal-to-noise ratios. FAMIS-TAS images showed the lowest signal-to-noise ratios. The images processed by the three methods displayed the same anatomical information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPELT: a Monte Carlo investigation. Phys Med Biol 1984; 29: 1217–1230.

    Google Scholar 

  2. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPELT quantification using compensation for scattered photons. J Nucl Med 1984; 25: 893–900.

    Google Scholar 

  3. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Deconvolution of Compton scatter in SPELT. J Nucl Med 1985; 26: 403–408.

    Google Scholar 

  4. Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPELT using point scatter distribution functions. J Nucl Med 1987; 28: 1861–1869

    Google Scholar 

  5. Halama JR. Henkin RE, Friend LE. Gamma camera radionuclide images: improved contrast with energy-weighted acquisition. Radiology 1988; 169: 533–538.

    Google Scholar 

  6. Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988; 29: 195–202.

    Google Scholar 

  7. Gagnon D, Todd-Pokropek A, Arsenault A, Dupras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 1989; 8: 245–250.

    Google Scholar 

  8. Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 1990; 31: 1560–1567.

    Google Scholar 

  9. Mas J, Hannequin P, Ben Younes R, Bellaton B, Bidet R. Scatter correction in planar imaging and SPELT by constrained factor analysis of dynamic structures (FADS). Phys Med Biol 1990; 35: 1451–1465.

    Google Scholar 

  10. Ogawa K, Harata Y, Ichibara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scattered correction in single photon emission CT. IEEE Trans Med Imaging 1991; 10: 408–412.

    Google Scholar 

  11. King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992; 33: 605–612.

    Google Scholar 

  12. Logan KW, McFarland WD. Single photon scatter compensation by photopeak energy distribution analysis. IEEE Trans Med Imaging 1992; 11: 161–164.

    Google Scholar 

  13. Wang X, Koral KF. A regularized deconvolution-fitting method for Compton-scatter correction in SPECT. IEEE Trans Med Imaging 1992; 11: 351–360.

    Google Scholar 

  14. Buvat I. Correction de la diffusion en imagerie scintigraphique. Thése de doctorat en Physique. Université de Paris XI, 1992.

  15. Buvat I, Benali H, Frouin F, Bazin JP, Di Paola R. Target apex-seeking in factor analysis of medical image sequences. Phys Med Biol 1993; 38: 123–138.

    Google Scholar 

  16. Buvat I, Ricard M, Benali H, Frouin F, Bazin JP, Aubert B, Di Paola R. Adaptive scatter extraction for SPECT imaging [abstract]. Eur J Nucl Med 1992; 19: 586.

    Google Scholar 

  17. Jaszczak RJ, Floyd CE, Coleman RE. Scatter compensation techniques for SPECT. IEEE Trans Nucl Sci 1985; 32: 786–793.

    Google Scholar 

  18. Benali H, Buvat I, Frouin F, Bazin JP, Di Paola R. A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS). Phys Med Biol 1993; 38: 1065–1080.

    Google Scholar 

  19. Di Paola R, Bazin JP, Aubry F, Aurengo A, Cavailloles F. Herry JY, Kahn E. Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci 1982; 29: 1310–1321.

    Google Scholar 

  20. Floyd CE, Jaszczak RJ, Harris CC, Greer KL, Coleman RE. Monte Carlo evaluation of Compton scatter subtraction in single photon emission computed tomography. Med Phys 1985; 12: 776–778.

    Google Scholar 

  21. Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990; 17: 1011–1022.

    Google Scholar 

  22. Ljungberg M, Msaki P, Strand SE. Comparison of dual-window and convolution scatter correction techniques using the Monte Carlo method. Phys Med Biol 1990; 35: 1099–1110.

    Google Scholar 

  23. Koral KF, Swailem FM, Buchbinder S, Clinthorne NH, Rogers WL, Tsui BMW. SPECT dual-energy-window Compton correction: scatter multiplier required for quantification. J Nucl Med 1990; 31: 90–98.

    Google Scholar 

  24. Koral KF, Buchbinder S, Clinthorne NH, Rogers WL, Swailem FM, Tsui BMW. Influence of region of interest selection on the scatter multiplier required for quantification in dual-window Compton correction. J Nucl Med 1991; 32: 186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: E Bonnin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnin, F., Buvat, I., Benali, H. et al. A comparative study of scatter correction methods for scintigraphic images. Eur J Nucl Med 21, 388–393 (1994). https://doi.org/10.1007/BF00171412

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171412

Key words

Navigation