Skip to main content
Log in

On the mechanism of action of phenylephrine in rat atrial heart muscle

  • Published:
Naunyn-Schmiedeberg’s Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Both in rat left atrial heart and in aortic smooth muscle preparations, phenylephrine (PE) caused a concentration-dependent increase in force of contraction (Fc) in the presence of atenolol (10 μmol/l), which was antagonized by phentolamine, prazosin and WB 4101 in a competitive manner. The pA2 values of the antagonists in the cardiac tissue were 10–20fold lower than those in the rat thoracic aorta. In the spontaneously beating right atrium, PE exerted a positive chronotropic action, which was not significantly antagonized by phentolamine or prazosin. It is therefore assumed that the effects of phenylephrine in the left atrium and in the aorta are mediated by different subtypes of α1-adrenoceptors, whereas the effects in the sino-atrial node are probably unrelated to α1-adrenoceptors. To further elucidate the mechanisms of the positive inotropic effect of PE, action potential configuration and 45Ca2+ fluxes were monitored in the rat left atrium. The increase in Fc by PE was associated with an increase in action potential duration (APD) and a reduction in resting membrane potential (RP). In the presence of (−)-devapamil (13888), the effects of PE on APD and RP persisted, whereas the increase in Fc was antagonized in a non-competitive manner. Forskolin (300 nmol/l) enhanced the positive inotropic effect of PE. PE exerted a significant increase in 45CA2+ uptake in beating preparations, which was abolished in the presence of (−)13888 (1 μmol/l). In addition to the PE-induced increase in 45Ca2+ uptake, a decrease in 45Ca2+ efflux was observed. Similarly, depolarization of the membrane by raising [K+]o to 85 mmol/l revealed an increase in 45Ca2+ uptake and a decrease in 45Ca2+ efflux. The latter observations support the view that the membrane potential strongly determines the movement of 45Ca2+ across the membrane. It is assumed that the α1-adrenoceptor-mediated changes in APD and RP may enhance Fc, first, by increasing net Ca2+ entry from the extracellular space through voltage-dependent Ca2+ channels and, second, by decreasing Ca2+ efflux possibly via the Na +/Ca2+ exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apkon M, Nerbonne JM (1988) α1-Adrenergic agonists selectively suppress voltage-dependent K+ currents in rat ventricular myocytes. Proc Natl Acad Sci USA 85:8756–8760

    Article  CAS  PubMed  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Awad R, Payne R, Deth RC (1983) Alpha adrenergic receptor subtype associated with receptor binding, Ca++ influx, Ca++ release and contractile events in the rabbit aorta. J Pharmacol Exp Ther 227: 60–67

    CAS  PubMed  Google Scholar 

  • Capogrossi MC, Kachadorian WA, Gambassi G, Spurgeon HA, Lakatta EG (1991) Ca+ dependence of α-adrenergic effects on the contractile properties and Ca2+ homeostasis of cardiac myocytes. Circ Res 69:540–550

    Article  CAS  PubMed  Google Scholar 

  • Crespo LM, Grantham CJ, Cannell MB (1990) Kinetics, stoichiometry and the role of the Na-Ca exchange mechanism in isolated cardiac myocytes. Nature 345:618–621

    Article  CAS  PubMed  Google Scholar 

  • Documenta Geigy (1968) Wissenschaftliche Tabellen. Diem K, Lentner C (eds) 7th edition, equations 660, 664a and 672

  • Dunnett CW (1964) New tables for multiple comparisons with a control. Biometrics 20:482–491

    Article  Google Scholar 

  • Ehrlich BE, Watras J (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336:583–586

    Article  CAS  PubMed  Google Scholar 

  • Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α- and β-adrenoceptors. Circ Res 62:247–265

    Article  CAS  PubMed  Google Scholar 

  • Ertl R, Jahnel U, Nawrath H, Carmeliet E, Vereecke J (1991) Differential electrophysiologic and inotropic effects of phenylephrine in atrial and ventricular heart muscle preparations from rats. Naunyn Schmiedebergs Arch Pharmacol 344:574–581

    Article  CAS  PubMed  Google Scholar 

  • Fedida D, Bouchard RA (1992) Mechanisms for the positive inotropic effect of α1-adrenoceptor stimulation in rat cardiac myocytes. Circ Res 71:673–688

    Article  CAS  PubMed  Google Scholar 

  • Fedida D, Shimoni Y, Giles WR (1990) α-Adrenergic modulation of the transient outward current in rabbit atrial myocytes. J Physiol (Lond) 423:257–277

    CAS  Google Scholar 

  • Fedida D, Braun AP, Giles WR (1993) α1-Adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiol Rev 73:469–487

    CAS  PubMed  Google Scholar 

  • Flavahan NA, Vanhoutte PM (1986) α1-Adrenoceptor subclassification in vascular smooth muscle. Trends Pharamacol Sci 7:347–349

    Article  CAS  Google Scholar 

  • Grossmann A, Furchgott RF (1964) The effects of external calcium concentration on the distribution and exchange of calcium in resting and beating guinea-pig auricles. J Pharmacol 143:107–119

    Google Scholar 

  • Hanft G, Gross G (1889) Subclassification of α1-adrenoceptor recognition sites by urapidil derivates and other selective antagonists. Br J Pharmacol 97:691–700

    Article  Google Scholar 

  • Hartmann HA, Mazzocca NJ, Kleiman RB, Houser SR (1988) Effects of phenylephrine on calcium current and contractility of feline ventricular myocytes. Am J Physiol 255:111173–111180

    Google Scholar 

  • Hescheler J, Nawrath H, Tang M, Trautwein W (1988) Adrenoceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea pigs and rabbits. J Physiol (Lond) 397:657–670

    CAS  Google Scholar 

  • Iwakura K, Hori M, Watanabe Y, Kitabatake A, Cragoe EJ, Yoshida H, Kamada T (1990) α1-Adrenoceptor stimulation increases intracellular pH and Ca2+ in cardiomyocytes through Na+/H+ and Na+/Ca2+ exchange. Eur J Pharmacol 186:29–40

    Article  CAS  PubMed  Google Scholar 

  • Jahnel U, Nawrath H, Carmeliet E, Vereecke J (1991) Depolarization-induced influx of sodium in response to phenylephrine in rat atrial heart muscle. J Physiol (Lond) 432:621–637

    CAS  Google Scholar 

  • Jahnel U, Kaufmann B, Rombusch M, Nawrath H (1992a) Contribution of both α-and β-adrenoceptors to the inotropic effects of catecholamines in the rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 346:665–672

    CAS  PubMed  Google Scholar 

  • Jahnel U, Nawrath H, Shieh R-C, Sharma VK, Williford DJ, Sheu S-S (1992b) Modulation of cytosolic free calcium concentration by α1-adrenoceptors in rat atrial cells. Naunyn Schmiedebergs Arch Pharmacol 346:88–93

    Article  CAS  PubMed  Google Scholar 

  • Jakob H, Nawrath H, Rupp J (1988) Adrenoceptor-mediated changes of action potential and force of contraction in human isolated ventricular heart muscle. Br J Pharmacol 94:584–590

    Article  CAS  PubMed  Google Scholar 

  • Kohl C, Schmitz W, Scholz H, Scholz J (1990) Evidence for the existence of inositol tetrakisphosphate in mammalian heart. Circ Res 66:580–583

    Article  CAS  PubMed  Google Scholar 

  • Leijten PAA; van Breemen C (1984) The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol (Lond) 357:327–339

    CAS  Google Scholar 

  • Medgett IC, Langer SZ (1984) Heterogeneity of smooth muscle α-adrenoceptors in rat tail artery in vitro. J Pharmacol Exp Ther 229:823–830

    CAS  PubMed  Google Scholar 

  • Minneman KP (1988) α1-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40:87–119

    CAS  PubMed  Google Scholar 

  • Morrow AL, Creese I (1986) Characterization of alpha1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4101 and [3H]prazosin binding. Mol Pharmacol 29:321–330

    CAS  PubMed  Google Scholar 

  • Movsesian MA, Thomas AP, Selak M, Williamson JR (1985) Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185:328–332

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu I, Ohmura T, Kigoshi S, Hashimoto S, Oshita M (1990) Pharmacological subclassification of α1-adrenoceptors in vascular smooth muscle. Br J Pharmacol 99:197–201

    Article  CAS  PubMed  Google Scholar 

  • Nawrath H (1989) Adrenoceptor-mediated changes of excitation and contraction in isolated heart muscle preparations. J Cardiovasc Pharmacol 14 [Supp III]:S1-Sl0

    Article  CAS  PubMed  Google Scholar 

  • Nawrath H, Raschack M (1987) Effects of (−)-desmethoxyverapamil on heart and vascular smooth muscle. J Pharmacol Exp Ther 242:1090–1097

    CAS  PubMed  Google Scholar 

  • Nosek TM, Williams MF, Zeigler ST, Godt RE (1986) Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250:C807-C811

    CAS  PubMed  Google Scholar 

  • Otani H, Otani H, Das DK (1988) α1-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscle. Circ Res 62:8–17

    Article  CAS  PubMed  Google Scholar 

  • Otani H, Otani H, Uriu T, Hara M, Inoue M, Omori K, Cragoe EJ, Inagaki C (1990) Effects of inhibitors of protein kinase C and Na+/H+ exchange on α1-adrenoceptor-mediated inotropic responses in the rat left ventricular papillary muscle. Br J Pharmacol 100:207–210

    Article  CAS  PubMed  Google Scholar 

  • Poggioli J, Sulpice JC, Vassort G (1986) Inositol phosphate production following α1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Letters 206:292–298

    Article  CAS  PubMed  Google Scholar 

  • Pucéat M, Clément O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G (1990) Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res 67:517–524

    Article  PubMed  Google Scholar 

  • Rana RS, Hokin LE (1990) Role of phosphoinositides in transmembrane signaling. Physiol Rev 70:115–164

    CAS  PubMed  Google Scholar 

  • Ravens U, Wang X-L, Wettwer G (1989) Alpha adrenoceptor stimulation reduces outward currents in rat ventricular myocytes. J Pharmacol Exp Ther 250:364–370

    CAS  PubMed  Google Scholar 

  • Ruffolo RR, Nichols AJ, Stadel JM, Hieble JP (1991) Structure and function of alpha-adrenoceptors. Pharmacol Rev 43:475–505

    CAS  PubMed  Google Scholar 

  • Satoh H, Hashimoto K (1988) Effect of α1-adrenoceptor stimulation with methoxamine and phenylephrine on spontaneously beating rabbit sino-atria, node cells. Naunyn Schmiedebergs Arch Pharmacol 337:415–422

    CAS  PubMed  Google Scholar 

  • Terzic A, Pucéat M, Clément O, Scamps F, Vassort G (1992) α1-Adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. J Physiol (Lond) 447:275–292

    CAS  Google Scholar 

  • Tohse N, Nakaya H, Hattori Y, Endou M, Kanno M (1990) Inhibitory effect mediated by α1-adrenoceptors on transient outward current in isolated rat ventricular cells. Pflügers Arch 415:575–581

    Article  CAS  PubMed  Google Scholar 

  • Trautwein W, Cavalié A, Flockerzi V, Hofmann F, Pelzer D (1987) Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes. Circ Res 61 [Suppl 1]:I-17-I-23

    Google Scholar 

  • Wagner J, Brodde O-E (1978) On the presence and distribution of α-adrenoceptors in the heart of various mammalian species. Naunyn-Schmiedebergs Arch Pharmacol 302:239–254

    Article  CAS  PubMed  Google Scholar 

  • Williford DL, Sharma VK, Korth M, Shen S-S (1990) Spatial heterogeneity of intracellular Ca2+ concentration in nonbeating guinea pig ventricular myocytes. Cir Res 66:234–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahnel, U., Duwe, E., Pfennigsdorf, S. et al. On the mechanism of action of phenylephrine in rat atrial heart muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 349, 408–415 (1994). https://doi.org/10.1007/BF00170888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170888

Key words

Navigation