Skip to main content
Log in

Purification and characterization of an adenotin-like adenosine binding protein from human platelets

  • Published:
Naunyn-Schmiedeberg’s Archives of Pharmacology Aims and scope Submit manuscript

Abstract

A low-affinity adenosine binding protein (adenotin) was purified from human platelet membranes by a four-step procedure. Purification was achieved after extraction from human platelet membranes with 0.30% 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Further purification included Sepharose CL 6 B gel filtration, DEAE-Sepharose CL 6 B, and hydroxylapatite chromatography. The protein was purified 884-fold to homogeneity with a 25% yield of binding activity from the membranes. 5′-[8(n)-3H]-N-ethyl-carboxamidoadenosine ([3H]NECA) binds to the purified protein with a KD of 155 (144–167) nmol/l and a Bmax of 1.85±0.10 nmol/mg of protein. Sodium dodecylsulfate polyacrylamide gel electrophoresis of purified protein revealed a single band at 98 kDa. The 2-chloro-substituted adenosine analogs 2-chloro-5′-N-methylcarb-oxamidoadenosine (CIMECA) and 2-chloro-5′-N-ethyl-carboxamidoadenosine (CINECA) were identified as new high affinity ligands of the purified protein showing Ki values of 18 nmol/l and 28 nmol/l, respectively. The low-affinity adenosine binding protein showed a pharmacological profile as follows: CIMECA > 5′-N-ethylcarbox-amidoadenosine (NECA) > 2-chloroadenosine (CIA) > 2-[4-(2-carboxyethyl)phenethylamino]-5′-N-ethylcarbox amidoadenosine (CGS 21680) > R-N6-phenylisopropyl-adenosine (R-PIA).

Amino-terminal sequence analysis revealed homologies to endoplasmin, glucose regulated protein (GRP 94), tumor rejection antigen precursor (GP96), and some stress related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGS 21,680:

2-[4-(2-carboxyethyl)phenethylamino]-5′N-ethylcarboxamidoadenosine

CIA:

2-chloroadenosine

CIMECA:

2-chloro-5′-N-methylcarboxamidoadenosine

CINECA:

2-chloro-5′-Nethylcarboxamidoadenosine

CHAPS:

3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate

NECA:

5′-N-ethylcarboxamidoaden-osine

DPCPX:

1,3-dipropyl-8-cyclopentylxanthine

MECA:

5′-N-meth-ylcarboxamidoadenosine

R-PIA:

R-N6-phenylisopropyladenosine

SDS-PAGE:

sodium dodecylsulfate polyacrylamide gel electrophoresis

XAC:

xanthine amine congener, 8-{4-8[([{(2-aminoethyl)amino}carbonyl]-methyl)oxy]phenyl}-1,3-dipropyl-xanthine

References

  • Ansorge J (1985) Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate. J Biochem Biophys Meth 11:13–20

    Article  CAS  PubMed  Google Scholar 

  • Bruns RF, Lawson-Wendling K, Pugsley TA (1983) A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem 132:74–81

    Article  CAS  PubMed  Google Scholar 

  • De Lean A, Hancock AA, Lefkowitz RJ (1982) Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol Pharmacol 21:5–16

    PubMed  Google Scholar 

  • Dechert U, Weber M, Weber-Schaeuffelen M, Wollny E (1989) Isolation and partial characterization of an 80000-dalton protein kinase from the microvessels of the porcine brain. J Neurochem 53:1268–1275

    Article  CAS  PubMed  Google Scholar 

  • Diocee BK, Souness JE (1987) Characterization of 5′-ethylcarboxamido [3H]adenosine binding to pig aorta smooth muscle membranes. Biochem Pharmacol 36:3621–3627

    Article  CAS  PubMed  Google Scholar 

  • Florio C, Traversa U, Vertua R, Puppini P (1988) 5′-N-ethylcarbox-amido[8-3H]adenosine binds to two different adenosine receptors in membranes from the cerebral cortex of the rat. Neuropharmacology 27:85–94

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BB, Michel T, Brennemann TB, Lefkowitz RJ (1982) Interactions of agonists with platelet α2-adrenergic receptors. Endocrinology 110:926–932

    Article  CAS  PubMed  Google Scholar 

  • Hüttemann E, Ukena D, Lenschow V, Schwabe U (1984) Ra adenosine receptors in human platelets. Characterization by 5′-N-ethylcarbox-amido[3H]adenosine binding in relation to adenylate cyclase activity. Naunyn Schmiedebergs Arch Pharmacol 325:226–233

    Article  PubMed  Google Scholar 

  • Hutchison KA, Fox IH (1989) Purification and characterization of the adenosine A2-like binding site from human placental membranes. J Biol Chem 264:19898–19903

    CAS  PubMed  Google Scholar 

  • Hutchison KA, Nevins B, Perini F, Fox IH (1990) Soluble and membrane-associated human low affinity adenosine binding protein (adenotin): Properties and homology with mammalian and avian stress proteins. Biochemistry 29:5138–5144

    Article  CAS  PubMed  Google Scholar 

  • Keen M, Kelly E, Nobbs P, MacDermot JM (1989) A selective binding site for 3H-NECA that is not an adenosine A2 receptor. Biochem Pharmacol 38:3827–3833

    Article  CAS  PubMed  Google Scholar 

  • Klotz K-N, Lohse MJ, Schwabe U (1986) Characterization of the solubilized A1 adenosine receptor from rat brain membranes. J Neurochem 46:1528–1534

    Article  CAS  PubMed  Google Scholar 

  • Kulomaa MS, Weigel NL, Kleinsek DA, Beattie BG, Coneely OM, March C, Zarucki-Schulz T, Schrader WT, O’Mally BW (1986) Amino acid sequence of a chicken heat shock protein derived from the complementary DNA nucleotide sequence. Biochemistry 25:6244–6251

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, Bell J, Ting J (1984) Biochemical characterization of the 94-and 78-kilodalton glucose-regulated proteins in hamster fibroblasts. J Biol Chem 259:4616–4621

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Elger B, Lindenborn-Fotinos J, Klotz K-N, Schwabe U (1988) Separation of A2 adenosine receptors of human platelets from non-receptor [3H]NECA binding sites by gel filtration. Naunyn Schmiedebergs Arch Pharmacol 337:64–68

    CAS  PubMed  Google Scholar 

  • Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  CAS  PubMed  Google Scholar 

  • Maki RG, Old LJ, Srivastava PK (1990) Human homologue of murine tumor rejection antigen gp 96: 5′-Regulatory and coding regions and relationship to stress-induced proteins. Proc Natl Acad Sci USA 87:5658–5662

    Article  CAS  PubMed  Google Scholar 

  • Matsuidaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinyliden difluoride membranes. J Biol Chem 262:10035–10038

    Google Scholar 

  • Mazzarella RA, Green M (1987) ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J Biol Chem 262:8875–8883

    CAS  PubMed  Google Scholar 

  • Nakata H, Fujisawa H (1988) Adenosine binding sites of rat pheochromocytoma PC 12 cell membranes: Partial characterization and solubilization. J Biochem 104:457–460

    CAS  PubMed  Google Scholar 

  • Nakata H, Fujisawa H (1989) 5′-N-Ethylcarboxamide[3H]adenosine binding sites of mouse mastocytoma P 815 cell membranes: characterization and solubilization. J Biochem 105:888–893

    CAS  PubMed  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Chen YT, Old LJ (1987) 5′-structural analysis of genes encoding polymorphic antigens of chemically induced tumors. Proc Natl Acad Sci USA 84:3807–3811

    Article  CAS  PubMed  Google Scholar 

  • Van Calker D, Müller M, Hamprecht B (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276:839–841

    Article  PubMed  Google Scholar 

  • Van PN, Peter F, Soling HD (1989) Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. J Biol Chem 264:17494–17501

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: T. Fein at the above adress

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fein, T., Schulze, E., Bär, J. et al. Purification and characterization of an adenotin-like adenosine binding protein from human platelets. Naunyn-Schmiedeberg’s Arch Pharmacol 349, 374–380 (1994). https://doi.org/10.1007/BF00170883

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170883

Key words

Navigation