Skip to main content
Log in

Molecular evolutionary analysis based on the amino acid sequence of catalase

Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Heme-containing catalase sequences from 20 different organisms representing prokaryotes, fungi, animals, and plants have been compiled for phylogenetic reconstruction. Phylogenies based on distance and parsimony analysis show that fungal and animal catalases can be derived from one ancestor, whereas bacterial catalases fail to form a monophyletic group. Plant catalases appear to form a second class of catalases that arose independently from a possible prokaryotic ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allgood GS, Perry JJ (1986) Characterization of a manganese-containing catalase from the obligate thermophile Thermoleophilum album. J Bacteriol 168:563–567

    Google Scholar 

  • Bell GI, Najarian RC, Mullenbach GT, Hallewell RA (1986) cDNA sequence coding for human kidney catalase. Nucleic Acids Res 14:5561–5562

    Google Scholar 

  • Bethards LA, Skadsen RW, Scandalios JG (1987) Isolation and characterization of a cDNA clone for the Cat2 gene in maize and its homology with other catalases. Proc Natl Acad Sci USA 84:6830–6834

    Google Scholar 

  • Bol DK, Yasbin RE (1991) The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Gene 109:31–37

    Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) The evolutionary relationships among known life forms. J Mot Evol 28:98–112

    Google Scholar 

  • Chiu JT, Loewen PC, Switala J, Gennis RB, Timkovich R (1989) Proposed structure for the prosthetic group of the catalase HPII from Escherichia coli. J Am Chem Soc 111:7046–7050

    Google Scholar 

  • Claiborne A, Fridovich I (1979) Purification of the o-dianisidine peroxidase from Escherichia coli B. J Biol Chem 254:4245–4252

    Google Scholar 

  • Cohen G, Rapatz W, Ruis H (1988) Sequence of the Saccharomyces cerevisiae CTAI gene and amino acid sequence of catalase A derived from it. Eur J Biochem 176:159–163

    Google Scholar 

  • Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50:319–375

    Google Scholar 

  • Didion T, Roggenkamp R (1992) Targeting signal of the peroxisomal catalase in the methylotrophic yeast Hansenula polymorpha. FEBS Lett 303:113–116

    Google Scholar 

  • Faulkner DV, Jurka J (1988) Multiple aligned sequence editor (MASE). Trends Biochem Sci 13:321–322

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1989) PHYLIP 3.4 User manual. University of Washington, Seattle

    Google Scholar 

  • Fita I, Rossmann MG (1985) The active center of catalase. J Mol Biol 185:21–37

    Google Scholar 

  • Fristensky B (1991) Biological research computer hierarchy (BIRCH). User manual. University of Manitoba, Winnipeg

    Google Scholar 

  • Furuta S, Hayashi H, Hijikata M, Miyazawa S, Osumi T, Hashimoto T (1986) Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver catalase. Proc Natl Acad Sci USA 83:313–317

    Google Scholar 

  • Haas A, Brehm K, Kreft J, Goebel W (1991) Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. J Bacteriol 173:5159–5167

    Google Scholar 

  • Hartig A, Ruis H (1986) Nucleotide sequence of the Saccharomyces cerevisiae CTTI gene and deduced amino acid sequence of yeast catalase T. Eur J Biochem 160:487–490

    Google Scholar 

  • Higgins DG, Sharp PM (1989) Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5:151–153

    Google Scholar 

  • Igual JC, González-Bosch C, Dopazo J, Pérez-Ortin JE (1992) Phylogenetic analysis of the thiolase family. Implications for the evolutionary origin of peroxisomes. J Mot Evol 35:147–155

    Google Scholar 

  • Isin SH, Allen RD (1991) Isolation and characterization of a pea catalase cDNA. Plant Mol Biol 17:1263–1265

    Google Scholar 

  • Jacob GS, Orme-Johnson WH (1979) Catalase of Neurospora crassa. I. Induction, purification, and physical properties. Biochemistry 18:2967–2975

    Google Scholar 

  • Kemmerer EC, Lei M, Wu R (1991) Structure and molecular evolutionary analysis of a plant cytochrome c gene: surprising implications for Arabidopsis thaliana. J Mol Evol 32:227–237

    Google Scholar 

  • Knauf HJ, Vogel RF, Hammes WP (1992) Cloning, sequence, and phenotypic expression of katA, which encodes catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 46: 549–552

    Google Scholar 

  • Kono Y, Fridovich I (1983) Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J Biol Chem 258: 6015–6019

    Google Scholar 

  • Lee YM, Friedman DJ, Ayala FJ (1985) Superoxide dismutase: an evolutionary puzzle. Proc Natl Acad Sci USA 82:824–828

    Google Scholar 

  • Loewen PC (1984) Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity. J Bacteriol 157: 622–626

    Google Scholar 

  • Loewen PC, Switala J (1986) Purification and characterization of catalase HPII from Escherichia coli K12. Biochem Cell Biol 64: 638–646

    Google Scholar 

  • Loewen PC, Switala J (1987) Purification and characterization of catalase-1 from Bacillus subtilis. Biochem Cell Biol 65:939–947

    Google Scholar 

  • Loewen PC, Switala J (1988) Purification and characterization of spore-specific catalase-2 from Bacillus subtilis. Biochem Cell Biol 66:707–714

    Google Scholar 

  • Mori H, Higo K, Higo H, Minobe Y, Matsui H, Chiba S (1992) Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds. Plant Mol Biol 18: 973–976

    Google Scholar 

  • Murthy MRN, Reid TJ, Sicignano A, Tanaka N, Rossmann MG (1981) Structure of beef liver catalase. J Mol Biol 152:465–499

    Google Scholar 

  • Ni W, Turley RB, Trelease RN (1990) Characterization of a cDNA encoding cottonseed catalase. Biochim Biophys Acta 1049:219–222

    Google Scholar 

  • Okada H, Veda M, Sugaya T, Atomi H, Mozaffar S, Hishida T, Teranishi Y, Okazaki K, Takechi T, Kamiryo T, Tanaka A (1987) Catalase gene of the yeast Candida tropicalis. Sequence analysis and comparison with peroxisomal and cyto solic catalases from other sources. Eur J Biochem 170:105–110

    Google Scholar 

  • Orr EC, Bewley GC, Orr WC (1990) cDNA and deduced amino acid sequence of Drosophila catalase. Nucleic Acids Res 18: 3663

    Google Scholar 

  • Pasternak JJ, Glick BR (1992) Molecular evolutionary analyses of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase. Can J Bot 70:715–723

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakajo S, Nakamura K, Asahi T (1987) Molecular cloning and nucleotide sequence of full-length cDNA for sweet potato catalase mRNA. Eur J Biochem 165:437–442

    Google Scholar 

  • Schroeder WA, Shelton JR, Shelton JB, Robberson B, Apell G, Fang RS, Ventura JB (1982) The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Arch Biochem Biophys 214: 397–421

    Google Scholar 

  • Shaffer JB, Preston KE, Shepard BA (1990) Nucleotide and deduced amino acid sequences of mouse catalase: molecular analysis of a low affinity mutant. Nucleic Acids Res 18:4941

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387

    Google Scholar 

  • von Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC (1991) Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol 173:514–520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: P.C. Loewen

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Ossowski, I., Hausner, G. & Loewen, P.C. Molecular evolutionary analysis based on the amino acid sequence of catalase. J Mol Evol 37, 71–76 (1993). https://doi.org/10.1007/BF00170464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170464

Key words

Navigation