Skip to main content

Patterns of energy metabolism and growth kinetics of Kluyveromyces marxianus in whey chemostat culture

Abstract

The influence of physiological parameters such as carbon substrate flux and O2 uptake rates on energy metabolism are reported with reference to biomass productivity in whey chemostat culture. The combined results show that oxidoreductive energy metabolism may be attained independently of the yeast reaching its maximum respiratory capacity. A novel metabolic interpretation is presented proposing that a relative imbalance between glycolysis and subsequent oxidative steps alone is sufficient to account for the observed results. By means of a mathematical model the results could be reproduced under all experimental conditions. The new interpretation provides an insight into the manner in which energy mettbolism is regulated and influences growth-related process Kluyveromyces marxianus, as well as other yeasts with similar physiological characteristics.

This is a preview of subscription content, access via your institution.

References

  1. Barford JP,(1989) A general model for aerobic yeast growth: continuous culture. Biotechnol Biorng 35:921–927

    Google Scholar 

  2. Barford JP, Hall RJ (1981) A mathematical model for the aerobic growth of Saccharomyces cerevisiae with a saturated respiratory capacity. Biotechnol Bioeng 23:1735–1762

    Google Scholar 

  3. Bergmeyer HU, Möllering H (1974) Acetate; determination with preceding indicator reaction. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. 3. Verlag Chemie, Weinheim. pp 1520–1528

    Google Scholar 

  4. Bungay HR, Tsao GT, Humphrey AE (1984) Biochemical Engineering. In: Perry RH, Green D (eds) Perry's chemical engineer's handbook, 6th edn. McGraw Hill, New York, pp 27.1–27.19

    Google Scholar 

  5. Castrillo JI (1992) Modelo y optimización de la fermentación de Kluyveromyces marxianus sorb marxianus sobre lactosuero para la producción de proteina unicellular. Ph. D.thesis, Universidad del Pais Vasco. (Spain)

    Google Scholar 

  6. Castrillo JI, Ugalde UO (1992) Energy metabolism of Kluyveromyces marxianus in deproteinated whey. Chemostat studies. Modelling. J Biotechnol 22:145–152

    Google Scholar 

  7. Castrillo JI, Ugalde UO (1993) Mathematical modelling of yeast energy yielding metabolism. Significance of coupling between glycolytic and oxidative fluxes. Binary. Comput Microbiol (in press)

  8. Chen KC, Wu WT, Chang KY (1986) Computer control for continuous cultivation of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 24:113–116

    Google Scholar 

  9. Fiechter A, Fuhrmann GF, Käppeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol 22:123–182

    Google Scholar 

  10. Fiechter A, Käppeli O, Meussdoerffer F (1987) Batch and continuous culture. In: Rose AH, Harrison JS (eds) The yeasts, vol 2, 2nd edn. Academic Press, London, pp 99–129

    Google Scholar 

  11. Gaden EL Jr (1959) Fermentation process kinetics. J Biochem Microbiol Technol Eng 1:413–429

    Google Scholar 

  12. Gancedo C, Serrano R (1989) Energy yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn. Academic Press, London, pp 205–259

    Google Scholar 

  13. Grob R (1985) Modern practice of G. C., 2nd edn. Wiley, New York

    Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  15. Moresi M (1983) SCP production from whey: scale-up of a process. In: Ferranti MP, Feichter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, pp 153–155

    Google Scholar 

  16. Moresi M, Trunfio A, Parente E (1990) Kinetics of continuous whey fermentation by K. fragilis. Chem Technol Biotechnol 49:205–222

    Google Scholar 

  17. Moulin G, Malige B, Galzy P (1981) Étude physiologique de Kluyveromyces fragilis, consequence pour la production de levure sur lactoserum. Lait 61:323–332

    Google Scholar 

  18. Moulin G, Malige B, Galzy P (1982) Balanced flora of an industrial fermenter: production of yeast from whey. J Dairy Sci 66:21–28

    Google Scholar 

  19. Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Sacch. uvarum: involvement of a short- and long-term regulation. J Gen Microbiol 129:43–49

    Google Scholar 

  20. Polo MC, Barahona F, Cáceres I (1986) Dosage par chromatographie liquide haute performance des principaux acides organiques du vin. Connais Vigne Vin 20:175–187

    Google Scholar 

  21. Postma E, Verduyn C, Scheffers WA, Dijken JP van (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Sacch. cerevisiae. Appl Environ Microbiol 55:468–477

    CAS  PubMed  Google Scholar 

  22. Ribéreau-Gayon J, Peynaud E, Sudraud P, Ribéreau-Gayon P (1982) Traité d'oenology. Sciences et techniques du vin, vol 1. Analyse et contrôle des vins, 2nd edn. Dunod, Paris

    Google Scholar 

  23. Rieger M, Käppeli O, Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose by S. cerevisiae. J Gen Microbiol 129:653–661

    Google Scholar 

  24. Simmonds PG, Pettitt BC, Zlatkis A (1967) Esterification, identification and chromatographic analysis of Krebs cycle ketoacids. Anal Chem 39:163–167

    Google Scholar 

  25. Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937

    CAS  Google Scholar 

  26. Soto Cámara JL, Montuenga C (1982) Extracción. In: Curso práctico de química orgánica. (Vertix collection, no. 15.) Alhambra Editorial, Madrid, Spain, pp 30–35

    Google Scholar 

  27. Stafford K (1986) Continuous fermentation. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society For Microbiology. Washington, pp 137–151

    Google Scholar 

  28. Stockar U von, Auberson LCM (1992) Chemostat cultures of yeasts, continuous culture fundamentals and simple unstructured mathematical models. J Biotechnol 22:69–88

    Google Scholar 

  29. Stouthamer AH, Verseveld HW van (1985) Stoichiometry of microbial growth. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1. Pergamon Press, New York, pp 215–238

    Google Scholar 

  30. Strang G (1980) Linear algebra and its applications, 2nd edn. Academic Press, New York

    Google Scholar 

  31. Vananuvat P, Kinsella JE (1975a) Production of yeast protein from crude lactose by Saccharomyces fragilis. Batch culture studies. J Food Sci 40:336–341

    Google Scholar 

  32. Vananuvat P, Kinsella JE (1975b) Protein production from crude lactose by Saccharomyces fragilis. Continuous culture studies. J Food Sci 40:823–825

    Google Scholar 

  33. Verduyn C, Stouthamer AH, Scheffers WA, Dijken JP van (1991) A theoretical evaluation of growth yield of yeasts. Antonie van Leeuwenhoek 59:49–63

    Google Scholar 

  34. Verduyn C, Postma E, Scheffers WA, Dijken JP van (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    CAS  PubMed  Google Scholar 

  35. Walt JP van der, Johannsen E (1987) Genus 13. Kluyveromyces van der Walt emend. van der Walt. In: Kreger van Rij NJW (ed) The yeasts. A taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 224–251

    Google Scholar 

  36. Warthesen JJ, Kramer PL (1979) Analysis of sugars in milk and ice cream by high pressure liquid chromatography. J Food Sci 44:626–627

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Correspondence to: J. I. Castrillo

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castrillo, J.I., Ugalde, U.O. Patterns of energy metabolism and growth kinetics of Kluyveromyces marxianus in whey chemostat culture. Appl Microbiol Biotechnol 40, 386–393 (1993). https://doi.org/10.1007/BF00170398

Download citation

Keywords

  • Biomass
  • Mathematical Model
  • Energy Metabolism
  • Uptake Rate
  • Biomass Productivity