Applied Microbiology and Biotechnology

, Volume 40, Issue 2–3, pp 386–393 | Cite as

Patterns of energy metabolism and growth kinetics of Kluyveromyces marxianus in whey chemostat culture

  • Juan I. Castrillo
  • Unai O. Ugalde
Applied Microbiology And Cell Physiology


The influence of physiological parameters such as carbon substrate flux and O2 uptake rates on energy metabolism are reported with reference to biomass productivity in whey chemostat culture. The combined results show that oxidoreductive energy metabolism may be attained independently of the yeast reaching its maximum respiratory capacity. A novel metabolic interpretation is presented proposing that a relative imbalance between glycolysis and subsequent oxidative steps alone is sufficient to account for the observed results. By means of a mathematical model the results could be reproduced under all experimental conditions. The new interpretation provides an insight into the manner in which energy mettbolism is regulated and influences growth-related process Kluyveromyces marxianus, as well as other yeasts with similar physiological characteristics.


Biomass Mathematical Model Energy Metabolism Uptake Rate Biomass Productivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barford JP,(1989) A general model for aerobic yeast growth: continuous culture. Biotechnol Biorng 35:921–927Google Scholar
  2. Barford JP, Hall RJ (1981) A mathematical model for the aerobic growth of Saccharomyces cerevisiae with a saturated respiratory capacity. Biotechnol Bioeng 23:1735–1762Google Scholar
  3. Bergmeyer HU, Möllering H (1974) Acetate; determination with preceding indicator reaction. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. 3. Verlag Chemie, Weinheim. pp 1520–1528Google Scholar
  4. Bungay HR, Tsao GT, Humphrey AE (1984) Biochemical Engineering. In: Perry RH, Green D (eds) Perry's chemical engineer's handbook, 6th edn. McGraw Hill, New York, pp 27.1–27.19Google Scholar
  5. Castrillo JI (1992) Modelo y optimización de la fermentación de Kluyveromyces marxianus sorb marxianus sobre lactosuero para la producción de proteina unicellular. Ph. D.thesis, Universidad del Pais Vasco. (Spain)Google Scholar
  6. Castrillo JI, Ugalde UO (1992) Energy metabolism of Kluyveromyces marxianus in deproteinated whey. Chemostat studies. Modelling. J Biotechnol 22:145–152Google Scholar
  7. Castrillo JI, Ugalde UO (1993) Mathematical modelling of yeast energy yielding metabolism. Significance of coupling between glycolytic and oxidative fluxes. Binary. Comput Microbiol (in press)Google Scholar
  8. Chen KC, Wu WT, Chang KY (1986) Computer control for continuous cultivation of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 24:113–116Google Scholar
  9. Fiechter A, Fuhrmann GF, Käppeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol 22:123–182Google Scholar
  10. Fiechter A, Käppeli O, Meussdoerffer F (1987) Batch and continuous culture. In: Rose AH, Harrison JS (eds) The yeasts, vol 2, 2nd edn. Academic Press, London, pp 99–129Google Scholar
  11. Gaden EL Jr (1959) Fermentation process kinetics. J Biochem Microbiol Technol Eng 1:413–429Google Scholar
  12. Gancedo C, Serrano R (1989) Energy yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, 2nd edn. Academic Press, London, pp 205–259Google Scholar
  13. Grob R (1985) Modern practice of G. C., 2nd edn. Wiley, New YorkGoogle Scholar
  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428Google Scholar
  15. Moresi M (1983) SCP production from whey: scale-up of a process. In: Ferranti MP, Feichter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, pp 153–155Google Scholar
  16. Moresi M, Trunfio A, Parente E (1990) Kinetics of continuous whey fermentation by K. fragilis. Chem Technol Biotechnol 49:205–222Google Scholar
  17. Moulin G, Malige B, Galzy P (1981) Étude physiologique de Kluyveromyces fragilis, consequence pour la production de levure sur lactoserum. Lait 61:323–332Google Scholar
  18. Moulin G, Malige B, Galzy P (1982) Balanced flora of an industrial fermenter: production of yeast from whey. J Dairy Sci 66:21–28Google Scholar
  19. Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Sacch. uvarum: involvement of a short- and long-term regulation. J Gen Microbiol 129:43–49Google Scholar
  20. Polo MC, Barahona F, Cáceres I (1986) Dosage par chromatographie liquide haute performance des principaux acides organiques du vin. Connais Vigne Vin 20:175–187Google Scholar
  21. Postma E, Verduyn C, Scheffers WA, Dijken JP van (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Sacch. cerevisiae. Appl Environ Microbiol 55:468–477PubMedGoogle Scholar
  22. Ribéreau-Gayon J, Peynaud E, Sudraud P, Ribéreau-Gayon P (1982) Traité d'oenology. Sciences et techniques du vin, vol 1. Analyse et contrôle des vins, 2nd edn. Dunod, ParisGoogle Scholar
  23. Rieger M, Käppeli O, Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose by S. cerevisiae. J Gen Microbiol 129:653–661Google Scholar
  24. Simmonds PG, Pettitt BC, Zlatkis A (1967) Esterification, identification and chromatographic analysis of Krebs cycle ketoacids. Anal Chem 39:163–167Google Scholar
  25. Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937Google Scholar
  26. Soto Cámara JL, Montuenga C (1982) Extracción. In: Curso práctico de química orgánica. (Vertix collection, no. 15.) Alhambra Editorial, Madrid, Spain, pp 30–35Google Scholar
  27. Stafford K (1986) Continuous fermentation. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society For Microbiology. Washington, pp 137–151Google Scholar
  28. Stockar U von, Auberson LCM (1992) Chemostat cultures of yeasts, continuous culture fundamentals and simple unstructured mathematical models. J Biotechnol 22:69–88Google Scholar
  29. Stouthamer AH, Verseveld HW van (1985) Stoichiometry of microbial growth. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1. Pergamon Press, New York, pp 215–238Google Scholar
  30. Strang G (1980) Linear algebra and its applications, 2nd edn. Academic Press, New YorkGoogle Scholar
  31. Vananuvat P, Kinsella JE (1975a) Production of yeast protein from crude lactose by Saccharomyces fragilis. Batch culture studies. J Food Sci 40:336–341Google Scholar
  32. Vananuvat P, Kinsella JE (1975b) Protein production from crude lactose by Saccharomyces fragilis. Continuous culture studies. J Food Sci 40:823–825Google Scholar
  33. Verduyn C, Stouthamer AH, Scheffers WA, Dijken JP van (1991) A theoretical evaluation of growth yield of yeasts. Antonie van Leeuwenhoek 59:49–63Google Scholar
  34. Verduyn C, Postma E, Scheffers WA, Dijken JP van (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517PubMedGoogle Scholar
  35. Walt JP van der, Johannsen E (1987) Genus 13. Kluyveromyces van der Walt emend. van der Walt. In: Kreger van Rij NJW (ed) The yeasts. A taxonomic study, 3rd edn. Elsevier, Amsterdam, pp 224–251Google Scholar
  36. Warthesen JJ, Kramer PL (1979) Analysis of sugars in milk and ice cream by high pressure liquid chromatography. J Food Sci 44:626–627Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Juan I. Castrillo
    • 1
  • Unai O. Ugalde
    • 1
  1. 1.Unit of Biochemistry, Department of Applied Chemistry, Faculty of ChemistryUniversity of the Basque CountrySan SebastianSpain

Personalised recommendations