Skip to main content

Analysis of longitudinal data using the hierarchical linear model

Abstract

The hierarchical linear model in a linear model with nested random coefficients, fruitfully used for multilevel research. A tutorial is presented on the use of this model for the analysis of longitudinal data, i.e., repeated data on the same subjects. An important advantage of this approach is that differences across subjects in the numbers and spacings of measurement occasions do not present a problem, and that changing covariates can easily be handled. The tutorial approaches the longitudinal data as measurements on populations of (subject-specific) functions.

This is a preview of subscription content, access via your institution.

References

  1. AlaskerF.D. (1992). Modeling quantitative developmental change, in J.B.Asendorpf & J.Valsiner (eds.), Stability and Change in Development. Newbury Park: Sage, pp. 88–109.

    Google Scholar 

  2. BrykA.S., RaudenbushS.W., & CongdonR.T. (1994). HLM 2/3: Hierarchical Linear Modeling with the HLM/2L and HLM/3L Programs. Chicago: Scientific Software International.

    Google Scholar 

  3. BrykA.S. & RaudenbushS.W. (1992). Hierarchical Linear Models, Applications and Data Analysis Methods. London: Sage.

    Google Scholar 

  4. DaleA. & DaviesR.B. (1994). Analyzing Social and Political Change. London: Sage.

    Google Scholar 

  5. DiggleP.J. (1988). An approach to the analysis of repeated measurements, Biometrics 44: 959–971.

    Google Scholar 

  6. DiggleP.J., LiangK.-Y., & ZegerS.L. (1994). Analysis of Longitudinal Data. Oxford: Clarendon Press.

    Google Scholar 

  7. GoldsteinH. (1987). Multilevel Models in Educational and Social Research. London: Charles Griffin & Co.

    Google Scholar 

  8. GoldsteinH. (1989). Flexible models for the analysis of growth data with an application to height prediction, Revue d'Epidémiologie et Santé Publique 37: 477–484.

    CAS  PubMed  Google Scholar 

  9. GoldsteinH., HealyM.J.R., & RasbashJ. (1994). Multilevel time series models with applications to repeated measures data, Statistics in Medicine 13: 1643–1655.

    Google Scholar 

  10. HoeksmaJ.B. & KoomenM.Y. (1992). Multilevel models in developmental psychological research: rationales and applications. Early Development and Parenting 1: 157–167.

    Google Scholar 

  11. HsiaoC. (1986). Analysis of Panel Data. Cambridge: Cambridge University Press.

    Google Scholar 

  12. JonesR.H. (1993). Longitudinal Data with Serial Correlation: A State Space Approach. London: Chapman and Hall.

    Google Scholar 

  13. KmentaJ. (1986). Elements of Econometrics, 2nd ed. New York: MacMillan.

    Google Scholar 

  14. LairdN.M. & WareJ.H. (1982). ‘Random-effects models for longitudinal data’, Biometrics 38: 963–974.

    CAS  PubMed  Google Scholar 

  15. LindseyJ.K. (1993). Models for Repeated Measurements. Oxford: Clarendon Press.

    Google Scholar 

  16. LongfordN.T. (1993). VARCL: Software for Variance Component Analysis of Data with Nested Random Effects (maximum likelihood). Manual. Groningen: ProGAMMA.

    Google Scholar 

  17. Maas, C. & Snijders, T.A.B. (1995). Analysis of repeated measures with missing data using the Hierarchical Linear Model, forthcoming.

  18. MarshH.W., & GraysonD. (1994). Longitudinal confirmatory factor analysis: common, time-specific, item-specific, and residual-error components of variance, Structural Equation Modeling 1: 116–145.

    Google Scholar 

  19. OrmelJ. & SchaufeliW.B. (1991). Stability and change in psychological distress and their relationship with self-esteem and locus of control: a dynamic equilibrium model, Journal of Personality and Social Psychology 60: 288–299.

    Google Scholar 

  20. OrmelJ. & WohlfarthT. (1991). How neuroticism, long-term difficulties, and life situation change influence psychological distress: a longitudinal model, Journal of Personality and Social Psychology 60: 744–755.

    Google Scholar 

  21. PlewisI. (1994). Longitudinal multilevel models, in A.Davis and R.B.Davies (eds.), Analyzing Social and Pllitical Change. London: Sage.

    Google Scholar 

  22. ProsserR., RasbashJ., & GoldsteinH. (1991). ML3: Software for Three-level Analysis. London: Institute of Education, University of London.

    Google Scholar 

  23. RaudenbushS.W. & ChanW.-S. (1994). Application of a hierarchical linear model to the study of adolescent deviance in an overlapping cohort design, Journal of Consulting and Clinical Psychology 61: 941–951.

    Google Scholar 

  24. RogosaD., BrandtD., & ZimowskiM. (1982). A growth curve approach to the measurement of change, Psychological Bulletin 92: 726–748.

    Google Scholar 

  25. RogosaD.R. & WillettJ.B., (1985). Understanding correlates of change by modeling individual differences in growth, Psychometrika 50: 203–228.

    Google Scholar 

  26. RutterC.M., & ElashoffR.M. (1994). Analysis of longitudinal data: Random coefficient regression modelling, Statistics in Medicine 13: 1211–1231.

    Google Scholar 

  27. SeberG.A.F., & WildC.J. (1989). Nonlinear Regression. New York: Wiley and Sons.

    Google Scholar 

  28. SnijdersT.A.B. & BoskerR.J. (1994). Modeled variance in two level models, Sociological Methods and Research 22: 342–363.

    Google Scholar 

  29. SternioJ.L.F., WeisbergH.I., & BrykA.S. (1983). Empirical Bayes estimation of individual growth curves parameters and their relationship to covariates, Biometrics 39: 71–86.

    Google Scholar 

  30. SwamyP.A.V.B. (1974). Linear models with random coefficients, in P.Zarembka (ed.), Frontiers in Econometrics. New York: Academic Press.

    Google Scholar 

  31. WillettJ.B. & SayerA.G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time, Psychological Bulletin 116: 363–381.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Snijders, T. Analysis of longitudinal data using the hierarchical linear model. Qual Quant 30, 405–426 (1996). https://doi.org/10.1007/BF00170145

Download citation

Key words

  • Multilevel analysis
  • hierarchical linear model
  • random coefficients