Skip to main content
Log in

Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid

  • Applied Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The effect of acetic acid on transport of glucose and on the activity of glycolytic enzymes of Saccharomyces cerevisiae was investigated. Acetic acid did not affect glucose transport. The inhibitory effect of the acid on the enzymes was considered from the point of view of acidification of the cytoplasm (pH dependence of the activity) and of the direct effect of the presence of acetic acid. Enolase was the enzyme most severely affected according to these two criteria. Fermentation was monitored in vivo by 31P-NMR. When ATP was available, a rise in cytoplasmic pH was observed and fermentation proceeded with a lower level of sugar phosphate. This may indicate that control was exerted at one of the early phosphorylation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaban RS (1984) The application of nuclear magnetic resonance to the study of cellular physiology. Am J Physiol 246:C10-C19

    Google Scholar 

  • Banuelos M, Gancedo C (1978) In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch Microbiol 117:197–201

    Google Scholar 

  • Banuelos M, Gancedo C, Gancedo JM (1977) Activation by phosphate of yeast phosphofructokinase. J Biol Chem 252:6394–6398

    Google Scholar 

  • Dasari G, Worth MA, Connor MA, Pamment NB (1990) Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentations by Saccharomyces cerevisiae. Biotechnol Bioeng 35:109–122

    Google Scholar 

  • Dombek KM, Ingram LO (1986) Determination of the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 51:197–200

    Google Scholar 

  • Dombek KM, Ingram LO (1988) Intracellular accumulation of AMP as a cause for the decline in rate of ethanol production by Saccharomyces cerevisiae during batch fermentation. Appl Environ Microbiol 54:98–104

    Google Scholar 

  • Funayama S, Gancedo JM, Gancedo C (1980) Turnover of yeast fructose-bisphosphatase in different metabolic conditions. Eur J Biotchem 109:61–66

    Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–756

    Google Scholar 

  • Guijarro JM, Lagunas R (1984) Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J Bacteriol 160:874–878

    Google Scholar 

  • Hollander JA den, Ugurbil K, Brown TR, Bednar M, Redfield C, Shulman RG (1986a) Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25:203–211

    Google Scholar 

  • Hollander JA den, Ugurbil K, Shulman RG (1986b) 31P and 13C NMR studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae. Biochemistry 25:212–219

    Google Scholar 

  • Hoppner TC, Doelle HW (1983) Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur J Appl Microbiol Biotechnol 17:152–157

    Google Scholar 

  • Kosow DP, Rose IA (1971) Activators of yeast hexokinase. J Biol Chem 246:2618–2625

    Google Scholar 

  • Lafon-Lafourcade S, Geneix C, Ribéreau-Gayon P (1984) Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Appl Environ Microbiol 47:1246–1249

    Google Scholar 

  • Laurent M, Seydoux F (1977) Influence of phosphate on the allosteric behavior of yeast phosphofructokinase. Biochem Biophys Res Comm 78:1289–1295

    Google Scholar 

  • Leão C, Uden N van (1982) Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol Bioeng 24:2601–2604

    Google Scholar 

  • Leão C, Uden N van (1983) Effects of ethanol and other alkanols on the ammonium transport system of Saccharomyces cerevisiae. Biotechnol Bioeng 25:2085–2090

    Google Scholar 

  • Leão C, Uden N van (1984) Effects of ethanol and other alkanols of passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43–48

    Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Google Scholar 

  • Loureiro V, Gil-Ferreira H (1983) On the intracellular accumulation of ethanol in yeast. Biotechnol Bioeng 25:2263–2269

    Google Scholar 

  • Loureiro-Dias MC, Peinado JM (1982) Effect of ethanol and other alkanols on the maltose transport system of Saccharomyces cerevisiae. Biotechnol Lett 4:721–724

    Google Scholar 

  • Loureiro-Dias MC, Peinado JM (1984) Transport of maltose in Saccharomyces cerevisiae. Effect of pH and potassium ions. Biochem J 222:293–298

    Google Scholar 

  • Maitra PK, Lobo Z (1971) A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem 246:475–488

    Google Scholar 

  • Millar DG, Griffiths-Smith K, Algar E, Scopes RK (1982) Acitivity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol Lett 4:601–606

    Google Scholar 

  • Nagodawithana TW, Steinkraus KH (1976) Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in “rapid fermentation”. Appl Environ Microbiol 31:158–162

    Google Scholar 

  • Navon G, Shulman RG, Yamane T, Eccleshall TR, Lam K-B, Baronofsky JJ, Marmur J (1979) Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18:4487–4499

    Google Scholar 

  • Neal AL, Weinstock JO, Lampen JO (1965) Mechanisms of fatty acid toxicity for yeast. J Bacteriol 90:126–131

    Google Scholar 

  • Nicolay K, Scheffers WA, Bruinenberg PM, Kaptein R (1982) Phosphorus-31 nuclear magnetic resonance studies of intracellular pH, phosphate compartmentation and phosphate transport in yeasts. Arch Microbiol 133:83–89

    Google Scholar 

  • Novak M, Strehaiano P, Moreno M, Goma G (1981) Alcoholic fermentation: on the inhibitory effect of ethanol. Biotechnol Bioeng 23:201–211

    Google Scholar 

  • Ovádi J (1988) Old pathway — new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem Sci 13:486–490

    Google Scholar 

  • Pamment NB (1989) Overall kinetics and mathematical modelling of ethanol inhibition in yeasts. In: Uden N van (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, Fla., pp 1–75

    Google Scholar 

  • Pampulha ME, Loureiro V (1989) Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnol Lett 11:269–274

    Google Scholar 

  • Pampulha ME, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550

    CAS  Google Scholar 

  • Pinto I, Cardoso H, Leão C, Uden N van (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33:1350–1352

    Google Scholar 

  • Polakis ES, Bartley W (1965) Changes in enzyme activities in Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J 97:284–297

    Google Scholar 

  • Reibstein D, Hollander JA den, Pilkis SJ, Shulman RG (1986) Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic. Biochemistry 25:219–227

    Google Scholar 

  • Roberts JKM, Jardetzky O (1981) Monitoring of cellular metabolism by NMR. Biochim Biophys Acta 639:53–76

    Google Scholar 

  • Salmon JM (1989) Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentation. Appl Environ Microbiol 55:953–958

    Google Scholar 

  • Santos H, Turner D (1986) Characterization of the improved sensitivity obtained using a flow method for oxygenation and mixing cell suspensions in NMR. J Magnet Reson 68:345–349

    Google Scholar 

  • Serrano R, Gancedo JM, Gancedo C (1973) Assay of yeast enzymes in situ. A potential tool in regulation studies. Eur J Biochem 34:479–482

    Google Scholar 

  • Uden N van (1967) Transport-limited fermentation and growth of Saccharomyces cerevisiae and its competitive inhibition. Arch Microbiol 58:155–168

    Google Scholar 

  • Uden N van (1989) Effects of alcohols on membrane transport in yeasts. In: Uden N van (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, Fla., pp 135–146

    Google Scholar 

  • Viegas CA, Rosa MF, Sá-Correia I, Novais JM (1989) Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl Environ Microbiol 55:21–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: M. C. Loureiro-Dias

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pampulha, M.E., Loureiro-Dias, M.C. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34, 375–380 (1990). https://doi.org/10.1007/BF00170063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170063

Keywords

Navigation