Skip to main content
Log in

Seismic parameters controlling far-field tsunami amplitudes: A review

  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We present a review of the influence of various parameters of the sources of major oceanic earthquakes on the amplitude of tsunamis at transoceanic distances. We base our computations on the normal mode formalism, applied to realistic Earth models, but interpret our principal results in the simpler framework of Haskell theory in the case of a water layer over a Poisson half-space. Our results show that source depth and focal geometry play only a limited role in controlling the amplitude of the tsunami; their combined influence reaches at most 1 order of magnitude down to a depth of 150 km into the hard rock. More important are the effects of directivity due to rupture propagation along the fault, which for large earthquakes can result in a ten-fold decrease in tsunami amplitude by destructive interference, and the possibility of enhanced tsunami excitation in material with weaker elastic properties, such as sedimentary layers. Modelling of the so-called ‘tsunami earthquakes’ suggests that an event for which 10% of the moment release takes place in sediments generates a tsunami 10 times larger than its seismic moment would suggest. We also investigate the properties of non-double couple sources and find that their relative excitation of tsunamis and Rayleigh waves is in general comparable to that of regular seismic sources. In particular, landslides involving weak sediments could result in very large tsunamis. Finally, we emphasize that the final amplitude at a receiving shore can be strongly affected by focusing and defocusing effects, due to variations in bathymetry along the path of the tsunami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K.: 1973, Tsunami and mechanism of great earthquakes, Phys. Earth Planet. Inter. 7, 143–153.

    Google Scholar 

  • Abe, K.: 1979, Size of great earthquakes of 1837–1974 inferred from tsunami data, J. Geophys. Res. 84, 1561–1568.

    Google Scholar 

  • Abe, K.: 1983, A new scale of tsunami magnitude, M t, in K. Iida and T. Iwasaki (eds), Tsunamis — Their Science and Engineering, Terrapub, Tokyo, pp. 91–101.

    Google Scholar 

  • Aki, K. and Richards, P. G.: 1980, Quantitative Seismology, W. H. Freeman, San Francisco.

    Google Scholar 

  • Ben-Menahem, A. and Singh, S. J.: 1981, Seismic Waves and Sources, Springer, New York, 1981.

    Google Scholar 

  • Ben-Menahem, A. and Rosenman, M.: 1972, Amplitude patterns of tsunami waves from submarine earthquakes, J. Geophys. Res. 77, 3097–3128.

    Google Scholar 

  • Comer, R. P.: 1980, Tsunami height and earthquake magnitude: theoretical basis of an empirical relation, Geophys. Res. Lett. 7, 445–448.

    Google Scholar 

  • Comer, R. P.: 1982, Tsunami generation: validity of decoupling the ocean from the solid Earth, Eos, Trans. Amer. Geophys. Un. 63, 376 [abstract].

    Google Scholar 

  • Eissler, H. K. and Kanamori, H.: 1987, A single-force model for the 1975 Kalapana, Hawaii, earthquake, J. Geophys. Res. 92, 4827–4836.

    Google Scholar 

  • Fukao, Y.: 1979, Tsunami earthquakes and subduction processes near deep-sea trenches, J. Geophys. Res. 84, 2303–2314.

    Google Scholar 

  • Geller, R. J.: 1976, Scaling relations for earthquake source parameters and magnitudes, Bull. Seismol. Soc. Amer. 66, 1501–1523.

    Google Scholar 

  • Gilbert, F.: 1970, Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. Res. Astr. Soc. 22, 223–226.

    Google Scholar 

  • Gilbert, F. and Dziewonski, A. M.: 1975, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. Roy. Soc. London 278A, 187–269.

    Google Scholar 

  • Harkrider, D. G. and Press, F.: 1967, The Krakatoa air-sea waves: an example of pulse propagation in coupled systems, Geophys. J. Roy. Astr. Soc. 13, 139–159.

    Google Scholar 

  • Hwang, L.-S. and Lin, A.: 1970, Experimental investigation of wave run-up under the influence of local geometry, in W. Adams (ed.), Tsunamis in the Pacific Ocean, East-West Center Press, Honolulu, pp. 407–426.

    Google Scholar 

  • Iida, K., Suzuki, T., Inagaki, K., and Hasegawa, K.: 1983, Finite element method for tsunami wave propagation in the Tokai district, in K. Iida and T. Iwasaki (eds.), Tsunamis: Their Science and Engineering, Terrapub, Tokyo, 1983, pp. 293–301.

    Google Scholar 

  • Kanamori, H.: 1970, The Alaska earthquake of 1964: Radiation of long-period surface waves and source mechanism, J. Geophys. Res. 75, 5029–5040.

    Google Scholar 

  • Kanamori, H.: 1972, Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter. 6, 346–359.

    Google Scholar 

  • Kanamori, H.: 1985, Non-double couple seismic source, Proc. XXIIIrd Gen. Assemb. Intl. Assoc. Seismol. Phys. Earth Inter., Tokyo, 1985, p. 425, [abstract].

  • Kanamori, H. and Cipar, J. J.: 1974, Focal process of the great Chilean earthquake, May 22, 1960, Phys. Earth Planet. Inter. 9, 138–136.

    Google Scholar 

  • Kanamori, H. and Given, J. W.: 1982, Analysis of long-period seismic waves excited by the May 18, 1980 eruption of Mount St. Helens — A terrestrial monopole?, J. Geophys. Res. 87, 5422–5432.

    Google Scholar 

  • Kanamori, H. and Stewart, G. S.: 1976, Mode of the strain release along the Gibbs Fracture Zone, Mid-Atlantic Ridge, Phys. Earth Planet. Inter. 11, 312–332.

    Google Scholar 

  • Kanamori, H., Given, J. W., and Lay, T.: 1984, Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980, J. Geophys. Res. 89, 1856–1866.

    Google Scholar 

  • Kanamori, H., Ekström, G., Dziewonski, A. M., and Barker, J. S.: 1986, An anomalous seismic event near Tori-Shima, Japan: a possible magma injection event, Eos, Trans. Amer. Geophys. Un. 67, 1117 [abstract].

    Google Scholar 

  • Kienle, J., Kowalik, Z., Murty, T. S.: 1987, Tsunamis generated by eruptions from Mount St. Augustine, Science 236, 1442–1447.

    Google Scholar 

  • Lynnes, C. S. and Ruff, L. J.: 1985, Source process and tectonic implications of the great 1975 North Atlantic earthquake, Geophys. J. Roy. astr. Soc. 82, 497–510.

    Google Scholar 

  • Okal, E. A.: 1978, A physical classification of the Earth's spheroidal modes, J. Phys. Earth 26, 75–103.

    Google Scholar 

  • Okal, E. A.: 1982a, Mode-wave equivalence and other asymptotic problems in tsunami theory, Phys. Earth Planet. Inter. 30, 1–11.

    Google Scholar 

  • Okal, E. A.: 1982b, Higher moment excitation of normal modes and surface waves, J. Phys. Earth 30, 1–31.

    Google Scholar 

  • Okal, E. A. and Talandier, J.: 1987, M m: Theory of a variable-period mantle magnitude, Geophys. Res. Lett. 14, 836–839.

    Google Scholar 

  • Raichlen, F., Lepelletier, T. G., and Tam, C. K.: 1983, The excitation of harbors by tsunamis, in K. Iida and T. Iwasaki (eds.), Tsunamis: Their Science and Engineering, Terrapub, Tokyo, pp. 359–385.

    Google Scholar 

  • Satake, K.: 1988, Effects of bathymetry on tsunami propagation: Application of ray-tracing to tsunamis, Pure Appl. Geoph. 126, 27–36.

    Google Scholar 

  • Shimazaki, K.: 1975, Nemuro-Oki earthquake of June 17, 1973: A lithospheric rebound at the upper half of the interface, Phys. Earth Planet. Inter. 9, 315–327.

    Google Scholar 

  • Silver, P. G. and Jordan, T. H.: 1983, Total moment spectra of fourteen large earthquakes, J. Geophys. Res. 88, 3273–3293.

    Google Scholar 

  • Sommerfeld, A.: 1964, Optics, Academic Press, New York.

    Google Scholar 

  • Spudich, P. K. P. and Orcutt, J. A.: 1980, Petrology and porosity of an oceanic crustal site: results from waveform modeling of seismic refraction data, J. Geophys. Res. 85, 1409–1433.

    Google Scholar 

  • Talandier, J. and Okal, E. A.: 1979, Human perception of T waves: the June 22, 1977 Tonga earthquake felt on Tahiti, Bull. Seismol. Soc. Amer. 69, 1475–1486.

    Google Scholar 

  • Talandier, J., Reymond, D., and Okal, E. A.: 1987, M m: Use of a variable-period mantle magnitude for the rapid one-station estimation of teleseismic moments, Geophys. Res. Lett. 14, 840–843.

    Google Scholar 

  • Ward, S. N.: 1980, Relationships of tsunami generation and an earthquake source, J. Phys. Earth 28, 441–474.

    Google Scholar 

  • Ward, S. N.: 1981, On tsunami nucleation: I. A point source, J. Geophys. Res. 86, 7895–7900.

    Google Scholar 

  • Ward, S. N.: 1982a, On tsunami nucleation: II. An instantaneous modulated line source, Phys. Earth Planet Inter. 27, 273–285.

    Google Scholar 

  • Ward, S. N.: 1982b, Earthquake mechanism and tsunami generation: the Kurile Islands event of October 13, 1963, Bull. Seismol. Soc. Amer. 72, 759–777.

    Google Scholar 

  • Woods, M. T. and Okal, E. A.: 1987, Effect of variable bathymetry on the amplitude of teleseismic tsunamis: a ray-tracing experiment, Geophys. Res. Lett. 14, 765–768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okal, E.A. Seismic parameters controlling far-field tsunami amplitudes: A review. Nat Hazards 1, 67–96 (1988). https://doi.org/10.1007/BF00168222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168222

Key words

Navigation