Skip to main content
Log in

Modelling of in vivo calcium metabolism. I. Optimal cooperation between constant and rhythmic behaviours

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The relevance of nonlinear dynamics to calcium metabolism led us to reevaluate the role of Ca-regulating hormones in Ca homeostasis. We suggest that, firstly, the main Ca metabolic functions in rat-bone and gut - are organized as dynamic entities able to generate various temporal expressions, including self-oscillating patterns and, secondly, Ca homeostasis results from interaction between both metabolic and hormonal oscillators. Following this schema, a major role for the hormonal system, with its circadian pattern, could be to act directly on metabolic functions or indirectly through feeding behaviour, in order to optimize, coordinate and synchronize the Ca fluxes at ECF level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Garside, J. and R.J. Davey (1980). Secondary contact nucleation: kinetics, growth and scale-up. Chem. Eng. Commun. 4: 393–424.

    Article  Google Scholar 

  • Larson, M.A. and Garside, J. (1986). Solute clustering and interfacial tension. J. Crystal Growth 76: 88–92.

    Article  Google Scholar 

  • Lausson, S., J.F. Staub, G. Milhaud and A.M. Perault-Staub (1985). Circadian variations in plasma calcium and calcitonin. J. Endocrinology 107: 389–395.

    Article  Google Scholar 

  • Lausson, S., N. Segond, G. Milhaud and J.F. Staub (1989). Circadian rhythms of calcitonin gene expression in the rat. J. Endocrinology 122: 527–534.

    Article  Google Scholar 

  • Markowitz, M.E., S. Arnaud, J.F. Rosen, M. Thorphy and S. Laximinaryan (1988). Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations. J. Clin. Endocrinol. Metab. 67: 1068–1073.

    Article  Google Scholar 

  • Miller, B. and A.W. Norman (1979). Evidence of a circadian rhythm in the activity of the 25-hydroxyvitamin-D3–1-hydroxylase. Biochem. Biophys. Res. Commun. 88: 730–734.

    Article  Google Scholar 

  • Moore-Ede, M.C., F.M. Sulzman and C.A. Fuller (1982). The Clocks that Time Us. Harvard University Press.

  • Neer, R.M. (1989). Calcium and inorganic phosphate homeostasis. In: L.L. DeGroot, ed. Endocrinology. Saunders Company Vol. 2: 927–954.

  • Neuman, M.W. (1982). Blood/bone equilibrium. Calcif. Tissue Res. 34: 117–120.

    Article  Google Scholar 

  • Perault-Staub, A.M., J.F. Staub and G. Milhaud (1974). A new concept of plasma calcium homeostasis. Endocrinology 95: 480–484.

    Article  Google Scholar 

  • Roelfsema, F., D. van der Heide, J. Poulis and D. Smeenk (1983). Diurnal urinary calcium and phosphate excretion patterns in parathyroidectomizedrats. J. Interdispl. Cycle Res. 14: 305–314.

    Article  Google Scholar 

  • Rusli, I.T., G.L. Schrader and M.A. Larson (1989). Raman spectroscopy study of NaNO3 solution system-solute clustering in supersaturated solutions. J. Crystal. Growth 97: 345–351.

    Article  Google Scholar 

  • Segel, L. A. Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge University Press.

  • Staub, J.F., A.M. Perault-Staub and G. Milhaud (1979). Endogenous nature of circadian rhythms in calcium metabolism. Am. J. Physiol. 237: R311-R317.

    Google Scholar 

  • Staub, J.F., P. Tracqui, P. Brezillon, G. Milhaud and A.M. Perault-Staub (1988). Calcium metabolism in the rat: A temporal self-organized model. Am. J. Physiol. 254: R134-R149.

    Google Scholar 

  • Staub, J.F., P. Tracqui, S. Lausson, G. Milhaud and A.M. Perault-Staub (1989). A physiological view of in vivo calcium dynamics: the regulation of a non linear self-organized system. Bone 10: 77–86.

    Article  Google Scholar 

  • Talmage, R.V., S.A. Grubb, H. Norimatsu and C.J. Vanderwiel (1980). Evidence for an important physiological role for calcitonin. Proc. Natl. Acad. sci. USA 77: 609–613.

    Article  Google Scholar 

  • Tracqui, P., A.M. Perault-Staub, G. Milhaud and J.F. Staub (1987). Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface. Bull. Math. Biol. 49: 597–613.

    Article  Google Scholar 

  • Tracqui, P., J.F. Staub and A.M. Perault-Staub (1989). Analysis of degenerate Hopf bifurcations for a non linear model of calcium metabolism. Non Linear Analysis: theory, Methods and Applications 13: 429–457.

    Article  Google Scholar 

  • Wrobel, J. and G. Nagel (1979). Diurnal rhythm of active transport in rat intestine. Experientia 35: 1581–1582.

    Article  Google Scholar 

  • Yates, F.E. (1982). System analysis of hormone action. In: R.F. Goldberger & K.R. Yamamoto, eds. Biological Regulation and Development, 25–97. New York, Plenum Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perault-Staub, A.M., Tracqui, P. & Staub, J.F. Modelling of in vivo calcium metabolism. I. Optimal cooperation between constant and rhythmic behaviours. Acta Biotheor 40, 95–102 (1992). https://doi.org/10.1007/BF00168138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168138

Keywords

Navigation