Applied Microbiology and Biotechnology

, Volume 38, Issue 6, pp 776–783 | Cite as

Xylose fermentation by Saccharomyces cerevisiae

  • Peter Kötter
  • Michael Ciriacy
Applied Microbial and Cell Physiology


We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants.


Xylose Xylitol Pichia Pentose Phosphate Pathway Xylose Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amore R, Wilhelm M, Hollenberg CP (1989) The fermentation of xylose — an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeasts. Appl Microbiol Biotechnol 30:351–357Google Scholar
  2. Amore R, Kötter P, Küster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97Google Scholar
  3. Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:126–228Google Scholar
  4. Bergmeyer HU (1984) Methods of enzymatic analysis. Verlag Chemie, WeinheimGoogle Scholar
  5. Bisson LF (1988) Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae. J Bacteriol 170:2654–2658Google Scholar
  6. Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80:1730–1734Google Scholar
  7. Bisson LF, Fraenkel DG (1984) Expression of kinase-dependent uptake in Saccharomyces cerevisiae. J Bacteriol 159:1013–1017Google Scholar
  8. Broach JR (1983) Construction of high copy yeast vectors using 2-μm circle sequences. Methods Enzymol 101:307–325Google Scholar
  9. Bruinenberg PM, Dijken JP van, Scheffers WA (1983) An enzymatic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129:965–971Google Scholar
  10. Bruinenberg PM, Bot PHM de, Dijken JP van, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260Google Scholar
  11. Bruinenberg PM, Jonker R, Dijken JP van, Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch Microbiol 142:302–306Google Scholar
  12. Busturia A, Lagunas R (1986) Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J Gen Microbiol 132:379–385Google Scholar
  13. Ciriacy M, Breitenbach I (1979) Physiological effects of seven different blocks in glucolysis in Saccharomyces cerevisiae. J Bacteriol 139:152–160Google Scholar
  14. Ciriacy M, Porep H (1986) Conversion of pentoses to ethanol by baker's yeast. In: Magnien M (ed) Biomolecular engineering in the European Community. Martinus Nijhoff Publishers, Dordrecht, pp 675–681Google Scholar
  15. Cirillo VP (1961) Sugar transport in microorganisms. Ann Rev Microbiol 15:197–218Google Scholar
  16. Dellweg H, Rizzi M, Mether H, Debus D (1984) Xylose fermentation by yeasts. 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6:395–400Google Scholar
  17. Dellweg H, Rizzi M, Klein C (1986) Controlled limited aeration and metabolic regulation during the production of ethanol from d-xylose by Pichia stipitis. J Biotechnol 12:111–122Google Scholar
  18. Dellweg h, Klein C, Prahl S, Rizzi M, Weigert B (1990) Kinetics of ethanol production from d-xylose by the yeast Pichia stipitis. Food Biotechnol 4:137–148Google Scholar
  19. Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl Environ Microbiol 55:159–164Google Scholar
  20. Dohmen RJ, Strasser AWM, Zitomer RS, Hollenberg CP (1989) Regulated overproduction of α-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis. Curr Genet 15:319–325Google Scholar
  21. Gancedo JM, Gancedo C (1973) Concentrations of intermediary metabolites in yeast. Biochemie 55:205–211Google Scholar
  22. Gong C-S, Chen LF, Flickinger MC, Tsao GT (1981) Conversion of hemicellulose carbohydrates. Adv Biochem Eng 20:93–118Google Scholar
  23. Halliwell G, Lovelady J (1981) Utilization of carboxymethylcellulose and enzyme synthesis by Trichoderma koningii. J Gen Microbiol 126:211–217Google Scholar
  24. Holzer H, Goedde HW (1957) Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem Z 326:385Google Scholar
  25. Jeffries TW (1983) Utilization of xylose by bacteria, yeast and fungi. Adv Biochem Eng 27:1–32Google Scholar
  26. Jeffries TW (1985) Emerging technology for fermenting d-xylose. TIBS 3:208–212Google Scholar
  27. Kilian SG, Uden N van (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548Google Scholar
  28. Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500Google Scholar
  29. Lagunas R, Gancedo JM (1973) Reduced pyrimidine-nucleotide balance in glucose-growing Saccharomyces cerevisiae. Eur J Biochem 37:90–94Google Scholar
  30. Lang JM, Cirillo VP (1987) Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol 169:2932–2937Google Scholar
  31. Ligthelm ME, Prior BA, Preez JC du, Brandt V (1988) An investigation of d-(1-13C) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28:293–296Google Scholar
  32. Meyrial V, Delgenes JP, Moletta R, Navarro JM (1991) Xylitol production from d-xylose by Candida guillermondii: fermentation behaviorr. Biotechnol Lett 13:281–286Google Scholar
  33. Neirinck L, Maleszka R, Schneider H (1982) Alcohol production from sugar mixtures by Pachysolen tannophilus. Biotechnol Bioeng Symp 12:161Google Scholar
  34. Porep HJ (1987) Xyluloseverwertung bei Saccharomyces cerevisiae. PhD thesis, University of DüsseldorfGoogle Scholar
  35. Prior BA, Kilian SG, Preez JC du (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis. Process Biochem 21–32Google Scholar
  36. Ramos J, Szkutnicka K, Cirillo VP (1988) Relationship between low- and high-affinity glucose transport systems in Saccharomyces cerevisiae. J Bacteriol 170:5375–5377Google Scholar
  37. Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154Google Scholar
  38. Sarthy AV, McConaught BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000Google Scholar
  39. Schneider H (1989) Conversion of pentoses to ethanol by yeasts and fungi. CRC Crit Rev Biochem Mol Biol 9:1–40Google Scholar
  40. Senac T, Hahn-Hägerdal B (1990) Intermediary metabolite concentrations in in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126Google Scholar
  41. Serrano R, Fuente G de la (1974) Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem 5:161–171Google Scholar
  42. Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–80Google Scholar
  43. Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394Google Scholar
  44. Slininger PJ, Bothast RJ, Okos MR, Ladisch MR (1985) Comparative evaluation of ethanol production oy xylose-fermenting yeasts presented high xylose concentrations. Biotechnol Lett 7:431–436Google Scholar
  45. Tran-Dinh S, Herve M, Wietzerbin J (1991) Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy. Eur J Biochem 201:715–721Google Scholar
  46. Wang PY, Schneider H (1980) Growth of yeasts on d-xylulose. Can J Microbiol 26:1165–1168Google Scholar
  47. Wilhelm M (1986) Klinierung des Bacillus subtilis Xylose Isomerase Gens: Expression in Escherichia coli und in der Bäckerhefe Saccharomyces cerevisiae. PhD thesis, Heinrich-Heine-Universität, DüsseldorfGoogle Scholar
  48. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Peter Kötter
    • 1
  • Michael Ciriacy
    • 1
  1. 1.Institut für MikrobiologieHeinrich-Heine-UniversitätDüsseldorfFederal Republic of Germany

Personalised recommendations