Skip to main content
Log in

Evolution of prothrombin: Isolation and characterization of the cDNAs encoding chicken and hagfish prothrombin

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The cDNA sequences of chicken and hagfish prothrombin have been determined. The sequences predict that prothrombin from both species is synthesized as a prepro-protein consisting of a putative Gla domain, two kringle domains, and a two-chain protease domain. Chicken and hagfish prothrombin share 51.6% amino acid sequence identity (313/627 residues). Both chicken and hagfish prothrombin are structurally very similar to human, bovine, rat, and mouse prothrombin and all six species share 41% amino acid sequence identity. Amino acid sequence alignments of human, bovine, rat, mouse, chicken, and hagfish prothrombin suggest that the thrombin B-chain and the propeptide-Gla domain are the regions most constrained for the common function(s) of vertebrate prothrombins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anson DS, Choo KH, Rees DJG, Giannelli F, Gould K, Huddleston JA, Brownlee GG (1984) The gene structure of human anti-haemophilic factor IX. EMBO J 3:1053–1060

    Google Scholar 

  • Atkinson T, Smith M (1984) Solid-phase synthesis of oligodeoxyribonucleotides by the phosphite-triester method. In: Gaitland MJ (ed) Oligonucleotide synthesis: a practical approach. IRL Press, Oxford, pp 70–72

    Google Scholar 

  • Banfield DK (1991) Characterization of thrombin cDNAs ranging from mammals to cyclostomes: structural analysis and evolution of prothrombin in vertebrates. PhD dissertation, University of British Columbia, Vancouver, British Columbia

    Google Scholar 

  • Banfield DK, MacGillivray RTA (1992) Partial characterization of vertebrate prothrombin cDNAs: amplification and sequence analysis of the B-chain of thrombin from 9 different species. Proc Natl Acad Sci USA 89:2779–2783

    Google Scholar 

  • Bar-Shavit R, Sabbah V, Lampugnani MG, Marchisio PC, Fenton II JW, Vlodavsky I, Dejana E (1991) An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol 112:335–344

    Google Scholar 

  • Bentley AK, Rees DJ, Rizza C, Brownlee GG (1986) Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position −4. Cell 45:343–348

    Google Scholar 

  • Bohonus VL, Doolittle RF, Pontes M, Strong DD (1986) Complementary DNA sequence of lamprey fibrinogen beta chain. Biochemistry 25:6512–6516

    Google Scholar 

  • Brenner S (1988) The molecular evolution of genes and proteins: a tale of two serines. Nature 334:528–530

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. CABIOS 5:233–234

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step isolation of RNA by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Bioch 162:156–159

    Google Scholar 

  • Cool DE, MacGillivray RTA (1987) Characterization of the human blood coagulation factor XII gene. J Biol Chem 262: 13662–13673

    Google Scholar 

  • Craik CS, Rutter WJ, Fletterick R (1983) Splice junctions: association with variation in protein structure. Science 220:1125–1129

    Google Scholar 

  • Cripe LD, Moore KD, Kane WH (1992) Structure of the gene for human coagulation factor V. Biochemistry 31:3777–3785

    Google Scholar 

  • Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30:10363–10370

    Google Scholar 

  • Degen SJF, MacGillivray RTA, Davie EW (1983) Characterization of the cDNA and gene coding for human prothrombin. Biochemistry 22:2087–2097

    Google Scholar 

  • Degen SJF, Davie EW (1987) Nucleotide sequence of the gene for human prothrombin. Biochemistry 26:6165–6177

    Google Scholar 

  • Degen SJF, Rajput B, Reich E (1986) The human tissue plasminogen activator gene. J Biol Chem 261:6972–6985

    Google Scholar 

  • Degen SJF, Schaefer LA, Jamison CS, Grant SG, Fitzgibbon JJ, Pai J-A, Chapman VM, Elliot RW (1990) Characterization of the cDNA coding for mouse prothrombin and localization of the gene on mouse chromosome 2. DNA Cell Biol 9:487–498

    Google Scholar 

  • Dihanich M, Monard D (1990) cDNA sequence of rat prothrombin. Nucleic Acids Res 18:4251

    Google Scholar 

  • Diuguid DL, Rabiet MJ, Furie BC, Leibman HA, Furie B (1986) Molecular basis of hemophilia B: a defective enzyme due to an unprocessed propeptide is caused by a point mutation in the factor IX precursor. Proc Natl Acad Sci USA 83:5803–5807

    Google Scholar 

  • Doolittle RF, Feng DF (1987) Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins. Cold Spring Harbor Symp Quant Biol 52:869–874

    Google Scholar 

  • Doolittle RF, Oncley JL, Surgenor DM (1962) Species differences in the interaction of thrombin and fibrinogen. J Biol Chem 237:3123–3127

    Google Scholar 

  • Doolittle RF, Surgenor DM (1962) Blood coagulation in fish. Am J Physiol 203:964–970

    Google Scholar 

  • Doolittle RF (1984) Fibrinogen and fibrin. Annu Rev Biochem 53:195–229

    Google Scholar 

  • Foster DC, Rudinski MS, Schach BG, Berkner KL, Kumar AA, Hagen FS, Sprecher CA, Insley MY, Davie EW (1987) The propeptide of human protein C is necessary for gamma carboxylation. Biochemistry 26:7003–7011

    Google Scholar 

  • Foster DC, Yoshitake S, Davie EW (1985) The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci USA 82:4673–4677

    Google Scholar 

  • Fuller GM, Doolittle RF (1971) Studies of invertebrate fibrinogen. I: Purification and characterization of fibrinogen from the spiny lobster. Biochemistry 10:1305–1311

    Google Scholar 

  • Furie B, Furie BC (1988) The molecular basis of blood coagulation. Cell 53:505–518

    Google Scholar 

  • Gatermann KB, Rosenber GH, Kaufer NF (1988) Double-stranded sequencing, using mini-prep plasmids, in eleven hours. Biotechniques 6:951–952

    Google Scholar 

  • Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM (1984) Characterization of the human factor VIII gene. Nature 312:326–330

    Google Scholar 

  • Handford PA, Winship PR, Brownlee GG (1991) Protein engineering of the propeptide of human factor IX. Protein Eng 4:319–323

    Google Scholar 

  • Henikoff S (1987) Undirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol 155:156–165

    Google Scholar 

  • Huber P, Schmitz T, Griffin J, Jacobs M, Walsh C, Furie B, Furie BC (1990) Identification of amino acids in the γ-carboxylation recognition site on the propeptide of prothrombin. J Biol Chem 265:12467–12473

    Google Scholar 

  • Irwin DM (1988) Evolution of an active-site codon in serine proteases. Nature 336:429–430

    Google Scholar 

  • Irwin DM, Robertson KA, MacGillivray RTA (1988) Structure and evolution of the bovine prothrombin gene. J Mol Biol 200:31–45

    Google Scholar 

  • Jackson CM, Nemerson Y (1980) Blood coagulation. Annu Rev Biochem 49:765–811

    Google Scholar 

  • Jorgensen MJ, Cantor AB, Furie BC, Brown CL, Shoemaker CB, Furie B (1987) Recognition site directing vitamin K-dependent γ-carboxylation resides on the propeptide of factor IX. Cell 48:185–191

    Google Scholar 

  • Khandjian EW (1986) UV crosslinking of RNA to nylon membrane enhances hybridization signals. Molec Biol Rep 11: 107–115

    Google Scholar 

  • Leytus SP, Foster DC, Kurachi K, Davie EW (1986) Gene for human factor X: a coagulation factor whose gene organization is essentially identical with that of factor IX and protein C. Biochemistry 25:5098–5102

    Google Scholar 

  • MacGillivray RTA, Cool DE, Fung MR, Guinto ER, Koschinsky ML, van Oost BA (1988) Structures of the genes encoding proteins involved in blood clotting. In: Setlow JK (ed) Genetic engineering principles and methods, vol 10. Plenum, New York, pp 265–330

    Google Scholar 

  • MacGillivray RTA, Davie EW (1984) Characterization of bovine prothrombin mRNA and its translation product. Biochemistry 23:1626–1634

    Google Scholar 

  • MacGillivray RTA, Irwin DM, Guinto ER, Stone JC (1986) Recombinant genetic approaches to functional mapping of thrombin. Ann NY Acad Sci 485:73–79

    Google Scholar 

  • Magnusson S, Peterson TE, Sottrup-Jensen L, Claeys H (1975) Complete primary structure of prothrombin: isolation, structure and reactivity of ten carboxylated glutamic acid residues and regulation of prothrombin activation by thrombin. In: Reich E, Rifkin DB, Shaw E (eds) Proteases and biological control. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, pp 123–149

    Google Scholar 

  • Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy (1990) Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76:1–16

    Google Scholar 

  • Miao CH, Leytus SP, Chung DW, Davie EW (1992) Liver-specific expression of the gene coding for human factor X, a blood coagulation factor. J Biol Chem 267:7395–7401

    Google Scholar 

  • Ny T, Elgh F, Lund B (1984) The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains. Proc Natl Acad Sci USA 81:5355–5359

    Google Scholar 

  • O'Hara PJ, Grant FJ, Haldeman BA, Gray CL, Insley MY, Hagen FS, Murray MJ (1987) Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein participating in blood coagulation. Proc Natl Acad Sci USA 84:5158–5162

    Google Scholar 

  • Pan Y, Doolittle RF (1992) cDNA sequence of a second fibrinogen alpha chain in lamprey: an archetypal version alignable with full-length beta and gamma chains. Proc Natl Acad Sci USA 89:2066–2070

    Google Scholar 

  • Park CH, Tulinsky A (1986) Three-dimensional structure of the kringle sequence: structure of prothrombin fragment 1. Biochemistry 25:3977–3982

    Google Scholar 

  • Petersen TE, Martzen MR, Ichinose A, Davie EW (1990) Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem 265:6104–6111

    Google Scholar 

  • Plutzky J, Hoskins JA, Long GL, Crabtree GR (1986) Evolution and organization of the human protein C gene. Proc Natl Acad Sci USA 83:546–550

    Google Scholar 

  • Ratnoff OD (1987) The evolution of hemostatic mechanisms. Perspect Biol Med 31:1–33

    Google Scholar 

  • Riccio A, Grimaldi G, Verde P, Sebastio G, Boast S, Blasi F (1985) The human urokinase-plasminogen activator gene and its promoter. Nucleic Acids Res 13:2759–2771

    Google Scholar 

  • Rogers J (1985) Exon shuffling and intron insertion in serine protease genes. Nature 315:458–459

    Google Scholar 

  • Rosenberg RD (1987) Regulation of the hemostatic mechanism. In: Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW (eds) The molecular basis of blood diseases. WB Saunders, Philadelphia, pp 534–574

    Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Soriano-Garcia M, Padmanabhan K, de Vos AM, Tulinsky A (1992) The Ca 2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 31: 2554–2566

    Google Scholar 

  • Soriano-Garcia M, Park CH, Tulinsky A, Ravichanran KG, Shrzypczak-Jankun E (1989) Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry 28:6805–6810

    Google Scholar 

  • Strong DD, Moore M, Cottrell BA, Bohonus VL, Pontes M, Evans B, Riley M, Doolittle RF (1985) Lamprey fibrinogen gamma chain: cloning, cDNA sequencing, and general characterization. Biochemistry 24:92–101

    Google Scholar 

  • Tulinsky A, Park CH, Mao B, Llinds M (1988) Lysine/fibrin binding sites of kringles modeled after the structure of kringle 1 of prothrombin. Proteins: Structure, Function, and Genetics 3:85–96

    Google Scholar 

  • Ulrich MMW, Furie B, Jacobs MR, Vermeer C, Furie BC (1988) Vitamin K-dependent carboxylation: a synthetic peptide based on the γ-carboxylation recognition site sequence of the prothrombin propetide is an active substrate for the carboxylase in vitro. J Biol Chem 263:9697–9702

    Google Scholar 

  • Von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105

    Google Scholar 

  • Walz DA, Kipfer RG, Jones JP, Olson RE (1974) Purification and properties of chicken prothrombin. Arch Biochem Biophys 164:527–535

    Google Scholar 

  • Walz DA (1978) Comparative aspects of prothrombin activation. Bibl Haematol 44:8–14

    Google Scholar 

  • Walz DA, Hewett-Emmett D, Seegers WH (1977) Amino acid sequence of human prothrombin fragments 1 and 2. Proc Natl Acad Sci USA 74:1969–1972

    Google Scholar 

  • Wang YZ, Patterson J, Gray JE, Yu C, Cottrell BA, Shimizu A, Graham D, Riley M, Doolittle RF (1989) Complete sequence of the lamprey fibrinogen alpha chain. Biochemistry 28: 9801–9806

    Google Scholar 

  • Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K (1985) Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 24:3736–3750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequences reported in this paper have been submitted to the EMBL/Genbank database under the following secession numbers: M 81391 for Gallus gallus, M 81393 for Eptatretus stouti.

Correspondence to: R.T.A. MacGillivray

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banfield, D.K., Irwin, D.M., Walz, D.A. et al. Evolution of prothrombin: Isolation and characterization of the cDNAs encoding chicken and hagfish prothrombin. J Mol Evol 38, 177–187 (1994). https://doi.org/10.1007/BF00166164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166164

Key words

Navigation