Skip to main content
Log in

Entropy and convergence in dynamics and demography

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Demographic dynamics is formally equivalent to the dynamics of a Markov chain, as is true of some nonlinear dynamical systems. Convergence to demographic equilibrium can be studied in terms of convergence in the Markov chain. Tuljapurkar (1982) showed that population entropy (Kolmogorov-Sinai entropy) provides information on the rate of this convergence. This paper begins by considering finite state Markov chains, providing elementary proofs of the relationship between convergence rate and entropy, and discusses in detail the uses and limitations of entropy as a convergence measure; these results also apply to Markovian dynamical systems. Next, new qualitative and quantitative arguments are used to discuss the demographic meaning of entropy. An exact relationship is established giving population entropy in terms of the eigenvalues of the Leslie matrix characteristic equation. Finally, the significance of imprimitive and periodic limits is discussed in relation to population entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artzrouni, M.: The rate of convergence of a generalized stable population. J. Math. Biol. 24, 405–422 (1986)

    Google Scholar 

  • Auger, P.: Stability of interacting populations with class-age distributions. J. Theor. Biol. 112, 595–605 (1985).

    Google Scholar 

  • Caswell, H.: Matrix population models. Sunderland, MA: Sinauer Associates 1989

    Google Scholar 

  • Chirikov, B. V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    Google Scholar 

  • Coale, A. J.: The growth and structure of human populations: A mathematical investigation. Princeton: Princeton University Press 1972

    Google Scholar 

  • Crutchfield, J. P., Packard, N. H.: Symbolic dynamics of noisy chaos. Physica 7D, 201–223 (1983)

    Google Scholar 

  • Curry, J. H.: On computing the entropy of the Henon attractor. J. Stat. Phys. 26, 683–695 (1981)

    Google Scholar 

  • Demetrius, L.: Demographic parameters and natural selection. Proc. Natl. Acad. Sci., USA 71, 4645–4647 (1974)

    Google Scholar 

  • Demetrius, L.: Relations between demographic parameters. Demography 16, 329–338 (1979)

    Google Scholar 

  • Demetrius, L., Schuster, P., Sigmund, K.: Polynucleotide evolution and branching processes. Bull. Math. Biol. 47, 239–262 (1985).

    Google Scholar 

  • Farmer, D., Crutchfield, J., Freehling, H., Packard, N., Shaw, R.: Power spectra and mixing properties of strange attractors. Ann. N.Y. Acad. Sci. 357, 453–472 (1980)

    Google Scholar 

  • Fill, J. A.: Eigenvalue bounds on convergence to stationarity for nonreversible Markov Chains, with an application to the Exclusion problem. Ann. Appl. Probab. 1, 62–87 (1991)

    Google Scholar 

  • Fraser, A. M.: Information and entropy in strange attractors. IEEE Trans. Inf. Theory. IT-35 (1989)

  • Fraser, A. M., Swinney, H. L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Google Scholar 

  • Goldstein, S.: Entropy increase in dynamical systems. Isr. J. Math. 38, 241–256 (1981)

    Google Scholar 

  • Goldstein, S., Penrose, O.: A non-equilibrium entropy for dynamical systems. J. Stat. Phys. 24, 325–343 (1981)

    Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  • Hamilton, I., Brumer, P.: Relaxation rates for two dimensional deterministic mappings. Phys. Rev. A 25, 3457–3459 (1982)

    Google Scholar 

  • Hamilton, I., Brumer, P.: Intramolecular relaxation in N = 2 Hamiltonian systems: the role of the K entropy. J. Chem. Phys. 78, 2682–2690 (1983)

    Google Scholar 

  • Keyfitz, N.: Introduction to the mathematics of populations. Reading, MA: Addison Wesley 1968

    Google Scholar 

  • Keyfitz, N.: Applied mathematical demography. Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  • Kim, Y. J.: On the speed of convergence to stability. (Unpublished manuscript, 1991)

  • Krieger, W.: On entropy and generators of measure preserving transformations. Trans. Am. Math. Soc. 199, 453–464 (1970).

    Google Scholar 

  • Marcus, M., Mine, H.: A Survey of Matrix Theory and Matrix Inequalities. Rockleigh, NH: Allyn and Bacon 1964

    Google Scholar 

  • Ornstein, D.: Ergodic theory, Randomness, and Dynamical Systems. New Haven: Yale University Press 1974

    Google Scholar 

  • Penrose, O.: Entropy and irreversibility. Ann. N.Y. Acad. Sci. 373, 211–219 (1981)

    Google Scholar 

  • Petersen, K.: Ergodic theory. Cambridge: Cambridge University Press 1983

    Google Scholar 

  • Pollard, J. H.: Mathematical models for the growth of human populations. Cambridge: Cambridge University Press 1973

    Google Scholar 

  • Schlögl, F.: Mixing distance and stability of steady states in statistical nonlinear thermodynamics. Z. Phys. B 25, 411–421 (1976).

    Google Scholar 

  • Schoen, R., Kim, Y.: Movement toward stability is a fundamental principle of population dynamics. Paper presented at Population Association of America annual meeting. Washington, D.C.: 1991

  • Seneta, E.: Entropy and martingales in Markov Chain models. J. Appl. Probab. 19A, 367–381 (1982).

    Google Scholar 

  • Shaw, R.: Strange attractors, chaotic behavior, and information flow. Z. Naturforsch. 36a, 80–112 (1981)

    Google Scholar 

  • Shaw, R. S.: The dripping faucet as a model of chaotic system. Santa Cruz, CA: Aerial Press 1985

    Google Scholar 

  • Sinai, Ya. G.: A weak isomorphism of transformations having an invariant measure. Sov. Math. Dokl. 3, 1725–1729 (1962).

    Google Scholar 

  • Tuljapurkar, S. D.: Why use population entropy? It determines the rate of convergence. J. Math. Biol. 13, 325–337 (1982).

    Google Scholar 

  • Wachter, K. W.: Lotka's roots under rescalings. Proc. Natl. Acad. Sci., USA 81, 3600–3604 (1984)

    Google Scholar 

  • Wightman, A. S.: Statistical mechanisms and ergodic theory. In: Cohen, E. G. D. (ed.) Statistical mechanics at the turn of the decade, pp. 1–32. New York: Marcel Dekker 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuljapurkar, S. Entropy and convergence in dynamics and demography. J. Math. Biol. 31, 253–271 (1993). https://doi.org/10.1007/BF00166145

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166145

Key words

Navigation