Skip to main content
Log in

Lizard homing behavior: the role of the parietal eye during displacement and radio-tracking, and time-compensated celestial orientation in the lizard Sceloporus jarrovi

  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Summary

The role of the parietal eye was investigated in Yarrow's spiny lizard, Sceloporus jarrovi. Three groups of lizards were displaced approximately 150 m from previously determined home ranges: (1) normal lizards, (2) sham-treated lizards (paint placed alongside the parietal eye), and (3) experimental lizards (parietal eye covered with a layer of paint). Significantly fewer experimental lizards returned home (20%) than either the normal (61%) or sham-treated lizards (57%). Control studies indicated that the parietal eye treatment did not affect the daily activity patterns, home range size, or survivorship of the lizards. Radio-tracking of displaced S. jarrovi showed that \(\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \) h after displacement, normal and sham-treated lizards moved in homeward pathways that were significantly non-random. Experimental lizards, however, were not significantly oriented, either \(\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \) or 3\(\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \) h later, and all moved in random directions after their release. The use of celestial cues for homing orientation was also examined. One group of lizards was maintained on a natural light-dark cycle (no phase-shift:NPS) while a second group was subjected to a 6-h advanced phase-shift (APS). All lizards were released in the field approximately 150m from their home ranges and radio-tracked. The NPL lizards were oriented towards home 30 min after release while the APS lizards shifted their orientation in a counterclockwise direction. Both NPS and APS lizards improved their orientation after 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Able KP (1980) Mechanisms of orientation, navigation, and homing. In: Gauthreaux SA Jr (ed) Animal migration, orientation and navigation. Academic Press, New York, pp 283–373

    Chapter  Google Scholar 

  • Adler K (1976) Extraocular photoreception in amphibians. Photochem Photobiol 23:275–298

    Article  CAS  Google Scholar 

  • Adler K, Phillips JB (1985) Orientation in a desert lizard (Uma notata): time-compensated compass movement and polarotaxis. J Comp Physiol 156:547–552

    Article  Google Scholar 

  • Aneshansley DJ, Larkin TS (1981) V-test is not a statistical test of “homeward” direction. Nature 293:239

    Article  Google Scholar 

  • Barzilay SS (1980) Orientation and homing of the wood turtle (Clemmys insculpta). PhD thesis, Rutgers University

  • Batschelet E (1972) Recent statistical methods for orientation data. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. NASA, Washington DC, pp 61–91

    Google Scholar 

  • Batschelet E (1978) Second order statistical analysis of directions. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, New York Berlin Heidelberg, pp 3–24

    Chapter  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Biology of the reptilia, vol 5. Academic Press, New York, pp 127–223

    Google Scholar 

  • Bissinger BE (1983) Homing behavior, sun-compass orientation, and thermoregulation in the lizard (Sceloporus jarrovi): the role of the parietal eye. PhD thesis, The City University of New York

  • DeRosa CT, Taylor DH (1978) Sun-compass orientation in the painted turtle, Chrysemys pieta (Reptilia, Testudines, Testudinidae). J Herpetol 12:25–28

    Article  Google Scholar 

  • DeRosa CT, Taylor DH (1982) A comparison of compass orientation mechanisms in three turtles (Trionyx spinifer, Chrysemys pieta and Terrapene carolina). Copeia 1982:394–398

    Article  Google Scholar 

  • Dodt E, Scherer E (1968) Photic responses from the parietal eye of the lizard Lacerta sicula campestris (De Betta). Vision Res 8:61–72

    Article  Google Scholar 

  • Eakin RM (1973) The third eye. University of California Press, Berkeley Los Angeles

    Google Scholar 

  • Ellis-Quinn B, Simon CA (1989) Homing behavior of the lizard Sceloporus jarrovi. J Herpetol 23:146–152

    Article  Google Scholar 

  • Ferguson DE (1967) Sun compass orientation in anurans. In: Storm RM (ed) Animal orientation and navigation. Oregon State University Press, Corvallis, pp 21–32

    Google Scholar 

  • Ferguson DE, McKeown JP, Bosarge OS, Landreth HF (1968) Sun-compass orientation of bullfrogs. Copeia 1968:230–235

    Article  Google Scholar 

  • Fischer K (1961) Untersuchungen zur Sonnenkompassorientierung und Laufaktivität von Smaragdeidechsen (Lacerta viridis Laur.). Z Tierpsychol 18:450–470

    Article  Google Scholar 

  • Gauthreaux SA, Jr (1980) Animal migration, orientation, and navigation. Academic Press, New York

    Google Scholar 

  • Glaser R (1958) Increase in locomotor activity following shielding of the parietal eye in night lizards. Science 128:1577–1578

    Article  CAS  PubMed  Google Scholar 

  • Griffin DR (1952) Bird navigation. Biol Rev 27:359–393

    Article  Google Scholar 

  • Gundy GC (1974) The evolutionary history and comparative morphology of the pineal complex in Lacertilia. PhD thesis, University of Pittsburgh

  • Guyer C (1978) Comparative ecology of the short-horned lizard (Phrynosoma douglassi) and the sagebrush lizard (Sceloporus graciosus) in southeastern Idaho. MS thesis, Idaho State University

  • Hamasaki DI (1968) Properties of the parietal eye of the green iguana. Vision Res 8:591–599

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki DI, Eder DJ (1977) Adaptive radiation of the pineal system. In: Crescittelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 498–548

    Google Scholar 

  • Harrison JL (1958) Range of movement of some Malayan rats. J Mammal 39:190–206

    Article  Google Scholar 

  • Ishihara S (1969) Homing behavior of the lizard, Tachydromus tachydromoides (Schlegel). Bull Kyoto Univ Educ Ser B 36:11–23

    Google Scholar 

  • Justis CS, Taylor DH (1976) Extraoptic photoreception and compass orientation in larval bullfrogs, Rana catesbeiana. Copeia 1976:98–105

    Article  Google Scholar 

  • Keeton WT (1974) The orientational and navigational basis of homing in birds. Adv Study Behav 5:47–132

    Article  Google Scholar 

  • Kramer K (1953) Die Sonnenorientierung der Vögel. Verb Dtsch Zool Ges Freiburg 1952:72–84

    Google Scholar 

  • Krekorian CO (1977) Homing in the desert iguana, Dipsosaurus dorsalis. Herpetologica 33:123–127

    Google Scholar 

  • Landreth H, Ferguson DE (1967) Newts: sun-compass orientation. Science 158:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Landreth H, Ferguson D (1968) The sun compass of Fowler's toad, Bufo woodhousei fowleri. Behaviour 30:27–43

    Article  Google Scholar 

  • Miller WH, Wolbarsht ML (1962) Neural activity in the parietal eye of a lizard. Science 135:316

    Article  CAS  PubMed  Google Scholar 

  • Murphy PA (1981) Celestial compass orientation in juvenile American alligators, (Alligator mississippiensis). Copeia 1981:638–645

    Article  Google Scholar 

  • Neuss M, Wallraff HG (1988) Orientation of displaced homing pigeons with shifted circadian clocks: prediction vs observation. Naturwissenschaften 75:363–365

    Article  CAS  PubMed  Google Scholar 

  • Newcomer RT, Taylor DH, Guttman SI (1974) Celestial orientation in two species of water snakes (Natrix sipedon and Regina septemvittata). Herpetologica 30:194–200

    Google Scholar 

  • Packard GC, Packard MJ (1972) Photic exposure of the lizard Callisaurus draconoides following shielding of the parietal eye. Copeia 1972:695–701

    Article  Google Scholar 

  • Papi F, Wallraff HG (1982) Avian navigation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Ralph CL, Firth BT, Gern WA, Owens DW (1979a) The pineal complex and thermoregulation. Biol Rev 54:41–72

    Article  CAS  Google Scholar 

  • Ralph CL, Firth BT, Turner JS (1979b) The role of the pineal body in ectotherm thermoregulation. Am Zool 19:273–293

    Article  CAS  Google Scholar 

  • Rodda GH (1984a) The orientation and navigation of juvenile alligators Alligator mississippiensis: evidence of magnetic sensitivity. J Comp Physiol [A] 154:658

    Article  Google Scholar 

  • Rodda GH (1984b) Homeward paths of displaced juvenile alligators as determined by ratio telemetry. Behav Ecol Sociobiol 14:241–246

    Article  Google Scholar 

  • Schmidt-Koenig K (1979) Avian orientation and navigation. Academic Press, London

    Google Scholar 

  • Schmidt-Koenig K (1983) Orientation. In: Abs M (ed) Physiology and behavior of the pigeon. Academic Press, New York, pp 73–94

    Google Scholar 

  • Sekera Z (1957) Polarization of skylight. In: Flugge (ed) Handbuch der Physik, vol 48 (Geophysik II). Springer, Berlin Heidelberg New York, pp 288–328

    Google Scholar 

  • Simon CA, Middendorf GA (1976) Resource partitioning by an iguanid lizard: temporal and microhabitat aspects. Ecology 57:1317–1320

    Article  Google Scholar 

  • Sokol RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco

    Google Scholar 

  • Stebbins RC (1960) Effects of pinealectomy in the western fence lizard Sceloporus occidentalis. Copeia 1960:276–283

    Article  Google Scholar 

  • Stebbins RC (1963) Activity changes in the striped plateau lizard with evidence on the influence of the parietal eye. Copeia 1963:681–691

    Article  Google Scholar 

  • Stebbins RC, Cohen NW (1973) The effect of parietalectomy on the thyroids and gonads in free living western fence lizards, Sceloporus occidentalis. Copeia 1973:622–668

    Google Scholar 

  • Stebbins RC, Eakin RM (1968) The role of the “third eye” in reptilian behavior. Am Mus Novit 1870:1–39

    Google Scholar 

  • Stebbins RC, Wilhoft DC (1966) Influence of the parietal eye on activity in lizards. In: Bowman RI (ed) The Galapagos. Proceedings of the Symposia of the Galapagos International Scientific Project. University of California Press, Berkeley, pp 258–268

    Google Scholar 

  • Taylor DH, Adler K (1978) The pineal body: site of extraocular perception of celestial cues for orientation in the tiger salamander (Ambystoma tigrinum). J Comp Physiol A 124:357–361

    Article  Google Scholar 

  • Taylor DH, Ferguson DE (1970) Extraoptic celestial orientation in the southern cricket frog Acris gryllus. Science 168:390–392

    Article  CAS  PubMed  Google Scholar 

  • Weintraub J (1970) Homing in the lizard Sceloporus orcutti. Anim Behav 18:132–137

    Article  Google Scholar 

  • White JE (1964) An index of the range of activity. Am Midl Nat 71:369–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: C.A. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis-Quinn, B.A., Simony, C.A. Lizard homing behavior: the role of the parietal eye during displacement and radio-tracking, and time-compensated celestial orientation in the lizard Sceloporus jarrovi . Behav Ecol Sociobiol 28, 397–407 (1991). https://doi.org/10.1007/BF00164121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00164121

Keywords

Navigation