Abercrombie, M., Heaysman, J. E. M., Pegrum, S. M.: The locomotion of fibroblasts in culture. II. ‘Ruffling’. Exp. Cell Res. 60, 437–444 (1970)
Google Scholar
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D.: Molecular Biology of the Cell. London: Garland 1983
Google Scholar
Argiro, V., Bunge, M. B., Johnson, M. L.: A quantitative study of growth cone filopodial extension. J. Neurosci. Res. 13, 149–162 (1985)
Google Scholar
Bray, D., White, J. G.: Cortical flow in animal cells. Science 239, 883–888 (1988)
Google Scholar
Cohan, C. S., Connor, J. A., Kater, S. B.: Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones. J. Neurosci. 7 (11), 3588–3599 (1987)
Google Scholar
Condeelis, J.: Rheological properties of cytoplasm: significance for the organization of spatial information and movement. In: McIntosh, J. (ed.) Modern Cell Biology, vol. 2: Spatial Organization of Eucaryotic Cells, pp. 225–240. New York: Alan R. Liss 1983
Google Scholar
Connor, J. A.: Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc. Natl. Acad. Sci. USA 83, 6179–6183 (1986)
Google Scholar
Forscher, P.: Calcium and polyphosphinositide control of cytoskeletal dynamics. Trends Neurosci. 12 (11), 468–474 (1989)
Google Scholar
Forscher, P., Smith, S. J.: Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988)
Google Scholar
Gordon-Weeks, P. R.: GAP-43 — What does it do in the growth cone? Trends Neurosci. 12 (10), 363–365 (1989)
Google Scholar
Harris, A. K.: Cell surface movements related to cell locomotion. (Ciba Found. Symp., New Ser. 14, pp. 3–26) Amsterdam: Associated Scientific Publishers 1973
Google Scholar
Hudspeth, A. J.: The hair cells of the inner ear. Sci. Am. 248, 42–52 (1983)
Google Scholar
Kater, S. B., Mattson, M. P., Cohan, C., Connor, J.: Calcium regulation of the neuronal growth cone. Trends Neurosci. 11 (7), 315–321 (1988)
Google Scholar
Landau, L. D., Lifshitz, E. M.: Theory of Elasticity, 2nd ed. London: Pergamon 1970
Google Scholar
Lewis, M. A.: Analysis of Dynamic and Stationary Biological Pattern Formation. D.Phil. Thesis, University of Oxford (1990)
Lewis, M. A., Murray, J. D.: Analysis of stable two-dimensional patterns in contractile cytogel. J. Nonlin. Sci. 1, 289–311 (1991)
Google Scholar
Lur'e, A. I.: Three-Dimensional Problems of the Theory of Elasticity, chap. 1. New York: John Wiley 1964
Google Scholar
Matkowski, B. J.: Nonlinear dynamic stability. SIAM J. Appl. Math. 18, 872–883 (1970)
Google Scholar
Murray, J. D.: Parameter space for Turing instability in reaction diffusion mechanisms: A comparison of models. J. Theor. Biol. 99, 161–199 (1982)
Google Scholar
Murray, J. D.: Mathematical Biology. Berlin Heidelberg New York: Springer 1989
Google Scholar
Odell, G. M.: A mathematically modelled cytogel cortex exhibits periodic Ca++-modulated contraction cycles seen in Physarum shuttle streaming. J. Embryol. Exp. Morphol. 83, 261–287 (1984)
Google Scholar
Oster, G. F.: On the crawling of cells. J. Embryol. Exp. Morphol. 83, 329–364 (1984)
Google Scholar
Oster, G. F., Murray, J. D., Harris, A. K.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78, 83–125 (1983)
Google Scholar
Oster, G. F., Murray, J. D., Odell, G. M.: The formation of microvilli. In: Molecular Determinants of Animal Form, pp. 365–384. New York: Alan R. Liss 1985
Google Scholar
Oster, G. F., Odell, G. M.: Mechanics of cytogels I: Oscillations in Physarum. Cell Motil. 4, 469–503 (1984a)
Google Scholar
Oster, G. F., Odell, G. M.: The mechanochemistry of cytogels. Physica 12D, 333–350 (1984b)
Google Scholar
Purcell, E.: Life at Low Reynolds Number. Am. J. Phys. 45, 1–11 (1977)
Google Scholar
Silver, R. A., Lamb, A. G., Bolsover, S. R.: Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones. Nature 343, 751–754 (1990)
Google Scholar
Stossel, T. P.: The spatial organization of cortical cytoplasm in macrophages. In: McIntosh, J. (ed.) Modern Cell Biology, vol. 2: Spatial Organization of Eucaryotic Cells, pp. 203–223. New York: Alan R. Liss 1983
Google Scholar
Tanaka, T.: Gels. Sci. Am. 244 (1), 124–138 (1981)
Google Scholar
Taylor D., Hellewell, S., Virgin, H., Heiple, J.: The solation-contraction coupling hypothesis of cell movements. In: Hatano, S. (ed.) Cell Motility, pp. 363–377. Baltimore: University Park Press 1979
Google Scholar
Tilney, L. G.: The role of actin in nonmuscle cell motility. In Inoue, S., Stephens, R. E. (eds.) Molecules and Cell Movement, pp. 339–388. New York: Raven 1975
Google Scholar
Tilney, L. G., De Rosier, D. J.: Actin filaments, stereocilia and hair cells of the bird cochlea IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev. Biol. 116, 119–129 (1986)
Google Scholar
Tilney, L. G., Inoue, S.: Acrosomal reaction of Thyrone sperm. II. The kinetics and possible mechanism of acrosomal process elongation. J. Cell Biol. 93, 820–827 (1982)
Google Scholar
Tosney, K. W., Wessells, N. K.: Neuronal motility: The ultrastructure of veils and microspikes correlates with their motile activities. J. Cell Sci. 61, 389–411 (1983)
Google Scholar
Weeds, A.: Actin-binding proteins — regulators of cell architecture and motility. Nature 296, 811–816 (1982)
Google Scholar
Zuber, M. X., Goodman, D. W., Karns, L. R., Fishman, M. C.: The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244, 1193–1195 (1989)
Google Scholar