Skip to main content
Log in

The microinjected Drosophila melanogaster 1731 retrotransposon is activated after the midblastula stage of the amphibian Pleurodeles waltl development

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The entire 1731 retrotransposon of Drosophila melanogaster, tagged with the E. coli lac Z gene inserted in its gag sequence, was injected into oocytes and fertilized eggs of the urodele amphibian Pleurodeles waltl. Expression of the reporter gene indicated that the 1731 promoter (its 5′LTR) is active in the embryos and not in the oocytes. It appeared that this element is regulated as amphibian genes are at the beginning of the development, i.e. that expression was detected after the mid blastula stage and maintained up to four or five days after injection. Another construction associating the modified 1731 promoter with the CAT gene is also expressed in Pleurodeles embryos during the same period of development. This indicated that the 1731 promoter issued from a Drosophila species is activated as promoting sequences of amphibian zygotic genes are, suggesting that in the case of horizontal transfer, 1731 can be expressed into vertebrate organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amman, E., B. Ochs & K.J. Abel, 1988. Tightly regulated tae promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301–315.

    Google Scholar 

  • Barth, L.G. & L.J. Barth, 1959. Differentiation of cells of the Rana pipiens gastrula in unconditioned medium. J. Embryol. Exp. Morph. 7: 210–222.

    Google Scholar 

  • Becker, J., J.L. Becker & M. Best-Belpomme, 1990. Characterization and purification of DNA-RNA complexes related with 1731 and copia-like transposable elements in a Drosophila cell line. Cell. Mol. Biol. 169: 1178–1184.

    Google Scholar 

  • Becker, J., D. Micard, B. Dastugue & M. Best-Belpomme, 1991. Ecdysterone decreases the transcription level of the retrotransposons 1731 and 412 in a Drosophila cell line. Cell. Mol. Biol. 37: 41–49.

    Google Scholar 

  • Champion, S., C. Maisonhaute, M.H. Kim & M. Best-Belpomme, 1992. Characterization of the reverse transcriptase of 1731, a Drosophila melanogaster retrotransposon. Eur. J. Biochem. 209: 523–531.

    Google Scholar 

  • Echalier, G., 1989. Drosophila retrotransposons: interactions with genome. Advances in Virus Res. 36: 33–105.

    Google Scholar 

  • Finnegan, D.J. & D.H. Fawcett, 1986. Transposable elements in Drosophila melanogaster. Oxford Surveys in Eukaryotic gene 3: 1–62.

    Google Scholar 

  • Flavell, A.J., 1992. Tyl-copia group retrotransposons and the evolution of retroelements in the eukaryotes. Genetica 86: 203–214.

    Google Scholar 

  • Fourcade-Peronnet, F., L. d'Auriol, J. Becker, F. Galibert & M. Best-Belpomme, 1988. Primary structure and functional organization of Drosophila 1731 retrotransposon. Nucleic Acids Res 16: 6113–6125.

    Google Scholar 

  • Grandbastien, M.A., 1992. Retroelements in higher plants. Trends in Genetics 8: 103–108.

    Google Scholar 

  • Gorman, C.M., L.F. Moffat & B.H. Howard, 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 2: 1044–1051.

    Google Scholar 

  • Kuff, E.L. & K.K. Lueders, 1988. The intracisternal A-particle gene family: structure and functional aspect. Advances in Cancer Res. 51: 183–276.

    Google Scholar 

  • Lambert, M.E., J.F. McDonald & I.B. Weinstein, eds., 1988. Eukaryotic transposable elements as mutagenic agents. Cold Spring Harbor Laboratory, USA.

    Google Scholar 

  • Lin, W.C. & L.A. Culp, 1991. Selectable plasmid vectors with alternative and ultrasensitive histochemical marker genes. Biotechniques 11: 344–351.

    Google Scholar 

  • McDonald, J.F., 1990. Macroevolution and retroviral elements. Bioscience 40: 183–191.

    Google Scholar 

  • Newport, J.W. & M.W. Kirschner, 1982a. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the mid-blastula stage. Cell 30: 675–686.

    Google Scholar 

  • Newport, J.W. & M.W. Kirschner, 1982b. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30: 687–696.

    Google Scholar 

  • Ousenek, N., G.T. Williams, R.I. Morimoto & J.J. Heikkila, 1990. Cis-acting sequences and trans-acting factors required for constitutive expression of a microinjected Hsp70 gene after the mid-blastula transition of Xenopus laevis embryogenesis. Dev. gene 11: 97–109.

    Google Scholar 

  • Petonnet, F., J.L. Becker, J. Becker, L. d'Auriol, F. Galibert & M. Best-Belpomme, 1986. A new retrotransposon with hormone regulated expression. Nucleic Acids Res. 14: 9017–9033.

    Google Scholar 

  • Pierce, R.J., C. Aimar, J.M. Balloul, M. Delarue, C. Grausz, D. Verwaerde & A. Capron, 1985. Translation of Schistosoma mansoni in Xenopus oocytes microinjected with mRNA from adult worms. Mol. Biochem. parasitol. 15: 171–188.

    Google Scholar 

  • Rusconi, S. & W. Schnaffner, 1981. Transformation of frog embryos with a rabbit β-globin gene. Proc. Natl. Acad. Sci. USA 78: 5051–5055.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Press. New-York, USA.

    Google Scholar 

  • Signoret, J. & J. Lefresne, 1971. Contribution à l'étude de la segmentation de l'oeuf d'axolotl: I. definition de la transition blastuléenne. Ann Embryol Morphol 4: 113–123.

    Google Scholar 

  • Slack, J.M.W. & J. Forman, 1980. An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. J. Embryol. Exp. Morph. 56: 283–299.

    Google Scholar 

  • Temin, H.M., 1980. Origin of retroviruses from cellular movable genetic elements. Cell 21: 599–600.

    Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    Google Scholar 

  • Ziarczyk, P., F. Fourcade-Peronnet, S. Simonart, C. Maisonhaute & M. Best-Belpomme, 1989. Functional analysis of the long terminal repeats of Drosophila 1731 retrotransposon: promoter function and steroid regulation. Nucleic Acids Res. 17: 8631–8644.

    Google Scholar 

  • Ziarczyk, P. & M. Best-Belpomme, 1991. A short 5′ region of the long terminal repeat is required for regulation by hormone and heat shock of Drosophila retrotransposon 1731. Nucleic Acid Res. 19: 5689–5693.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.H., Aimar, C., Best-Belpomme, M. et al. The microinjected Drosophila melanogaster 1731 retrotransposon is activated after the midblastula stage of the amphibian Pleurodeles waltl development. Genetica 92, 107–114 (1994). https://doi.org/10.1007/BF00163759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163759

Key words

Navigation