Skip to main content

The dynamics of hierarchical age-structured populations

Abstract

An age-structured population is considered in which the birth and death rates of an individual of age a is a function of the density of individuals older and/or younger than a. An existence/uniqueness theorem is proved for the McKendrick equation that governs the dynamics of the age distribution function. This proof shows how a decoupled ordinary differential equation for the total population size can be derived. This result makes a study of the population's asymptotic dynamics (indeed, often its global asymptotic dynamics) mathematically tractable. Several applications to models for intra-specific competition and predation are given.

This is a preview of subscription content, access via your institution.

References

  1. Botsford, L. W.: The effects of increased individual growth rates on depressed population size. Am. Nat. 117, 38–63 (1981)

    Google Scholar 

  2. Busenberg, S. N., Iannelli, M.: Separable models in age-dependent population dynamics. J. Math. Biol. 22, 145–173 (1985)

    Google Scholar 

  3. Costantino, R. F., Desharnais, R. A.: Population Dynamics and the Tribolium Model: Genetics and Demography, Monographs on Theoretical and Applied Genetics 13. Berlin, Heidelberg, New York: Springer 1991

    Google Scholar 

  4. Cushing, J. M.: A simple model of cannibalism. Math. Biosci. 107(1), 47–71 (1991)

    Google Scholar 

  5. Cushing, J. M.: A size-structured model for cannibalism. Theor. Popul. Biol. 42(3), 347–361 (1992)

    Google Scholar 

  6. Cushing, J. M., Li, J.: On Ebenman's model for the dynamics of a population with competing juveniles and adults. Bull. Math. Biol. 51, 687–713 (1989)

    Google Scholar 

  7. Cushing, J. M., Li, J.: Juvenile versus adult competition. J. Math. Biol. 29, 457–473 (1991)

    Google Scholar 

  8. Cushing, J. M., Li, J.: Intra-specific competition and density dependent juvenile growth. Bull. Math. Biol. 54(4), 503–519 (1992)

    Google Scholar 

  9. Ebenman, B.: Niche differences between age classes and intraspecific competition in age-structured populations. J. Theor. Biol. 124, 25–33 (1987)

    Google Scholar 

  10. Ebenman, B.: Competition between age classes and population dynamics. J. Theor. Biol. 131, 389–400 (1988)

    Google Scholar 

  11. Ebenman, B.: Dynamics of age- and size-structured populations: intraspecific competition, Size-Structured Populations, pp. 127–139 Ebenman and Persson (eds.). Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  12. Ebenman, Bo, Persson, L: Size-Structured Populations: Ecology and Evolution. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  13. Elgar, M. A., Crespi, B. J.: Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford: Oxford University Press 1992

    Google Scholar 

  14. Fox, Laurel, R.: Cannibalism in natural populations. Ann. Rev. Ecol. Syst. 6, 87–106 (1975)

    Google Scholar 

  15. Gurtin, M., MacCamy R. C.: Nonlinear age-dependent population dynamics. Arch. Rat. Mech. 54, 281–300 (1974)

    Google Scholar 

  16. Gurtin, M., MacCamy, R. C.: Some simple models for nonlinear age-dependent population dynamics. Math. Biosci. 43, 199–211; 213–237 (1979)

    Google Scholar 

  17. Gurney, W. S. C., Nisbet, R. M.: Ecological stability and social hierarchy. Theor. Popul. Biol. 16, 48–80 (1979)

    Google Scholar 

  18. Hastings, A.: Cycles in cannibalistic egg-larval interactions. J. Math. Biol. 24, 651–666 (1987)

    Google Scholar 

  19. Hale, J., Kocak, H.: Dynamics and Bifurcations, Texts in Applied Mathematics 3, Berlin, Heidelberg, New York: Springer 1991

    Google Scholar 

  20. Hoppensteadt, Frank: Mathematical Theories of Populations: Demographics, Genetics and Epidemics, Reg. Conf. Series in Appl. Math., SIAM, Philadelphia, 1975

    Google Scholar 

  21. Lomnicki, A: Population Ecology of Individuals, Monographs in Population Biology 25, Princeton University Press, Princeton, New Jersey, 1988

    Google Scholar 

  22. Lomnicki, A., Ombach, J.: Resource partitioning within a single species population and population stability: a theoretical model. Theor. Popul. Biol. 25, 21–28 (1984)

    Google Scholar 

  23. Loreau, M.: Competition between age classes, and the stability of stage-structured populations: a re-examination of Ebenman's model, J. Theor. Biol. 144, 567–571 (1990)

    Google Scholar 

  24. May, R. M., Conway, G. R., Hassell, M. P., Southwood, T. R. E.: Time delays, density-dependence and single-species oscillations. J. Anim. Ecol. 43, 747–770 (1974)

    Google Scholar 

  25. Metz, J. A. J., Diekmann, O.: The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics 68. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  26. Polis, Gary, A.: The evolution and dynamics of intraspecific predation, Ann. Rev. Ecol. Syst. 12, 225–251 (1981)

    Google Scholar 

  27. Simmes, Stephen, D.: Age dependent population dynamics with non-linear interactions, Ph.D. dissertation, Carnegi-Mellon University Pittsburgh, 1978

  28. Tschumy, W. O.: Competition between juveniles and adults in age-structured populations. Theor. Pop. Biol. 21, 255–268 (1982)

    Google Scholar 

  29. Tucker, S. L., Zimmerman, S. O.: A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math. 48(3), 549–591 (1988)

    Google Scholar 

  30. van den Bosch, F., de Roos, A. M., Gabriel, W.: Cannibalism as a life boat mechanism. J. Math. Biol. 26, 619–633 (1988)

    Google Scholar 

  31. Webb, G. F.: Theory of Nonlinear Age-dependent Population Dynamics. New York: Marcel Dekker, Inc. 1985

    Google Scholar 

  32. Werner, E. E., Gilliam, J. F.: The onogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15, 393–425 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cushing, J.M. The dynamics of hierarchical age-structured populations. J. Math. Biol. 32, 705–729 (1994). https://doi.org/10.1007/BF00163023

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163023

Key words

  • Age-structured population dynamics
  • McKendrick equations
  • Hierarchical models
  • Existence/uniqueness
  • Asymptotic dynamics
  • Global stability
  • Intra-specific competition
  • Cannibalism