Skip to main content
Log in

Cosmic ray anisotropies observed late in the decay phase of solar flare events

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Concurrent interplanetary magnetic field and 0.7–7.6 MeV proton cosmic-ray anisotropy data obtained from instrumentation on Explorers 34 and 41 are examined for five cosmic-ray events in which we observe a persistent eastern-anisotropy phase late in the event (t ≳ 4 days). The direction of the anisotropy at such times shows remarkable invariance with respect to the direction of the magnetic field (which generally varies throughout the event) and it is also independent of particle species (electrons and protons) and particle speed over the range 0.06 ⩽ β ⩽ 0.56. The anisotropy is from the direction 38.3° ± 2.4° E of the solar radius vector, and is inferred to be orthogonal to the long term, mean interplanetary field direction. Both the amplitude of the anisotropy and the decay time constant show a strong dependence on the magnetic field azimuth. Detailed comparison of the anisotropy and the magnetic field data shows that the simple model of convection plus diffusion parallel to the magnetic field is applicable for this phase of the flare effect.

It is demonstrated that contemporary theories do not predict the invariance of the direction as observed, even when the magnetic field is steady; these theories need extension to take into account the magnetic field direction ψ varying from its mean direction ψ o. It is shown that the late phase anisotropy vector is not expected to be everywhere perpendicular to the mean magnetic field. The suggestion that we are observing kinks in the magnetic field moving radially outwards from the Sun leads to the conclusion that the parallel diffusion coefficient varies as 1/cos2 (ψψ o). Density gradients in the late decay phase are estimated to be ≈ 700%∣AU for 0.7–7.6 MeV protons. A simple theory reproduces the dependence of the decay time constant on anisotropy; it also leads to a radial density gradient of about 1000%∣AU and diffusion coefficient of 1.3 × 1020 cm2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allum, F. R., Palmeira, R. A. R., Rao, U. R., McCracken, K. G., Harries, J. R., and Palmer, I.: 1971, Solar Phys. 17, 241.

    Google Scholar 

  • Axford, W. I.: 1969, Seminar on the Problem of Cosmic Ray Generation on the Sun, Leningrad, 1969.

  • Bartley, W. C., McCracken, K. G., Rao, U. R., Harries, J. R., Palmeira, R. A. R., and Allum, F. R.: 1971, Solar Phys. 17, 218.

    Google Scholar 

  • Fairfield, D. H.: 1969, J. Geophys. Res. 74, 3541.

    Google Scholar 

  • Fairfield, D. H. and Ness, N. F.: 1972, J. Geophys. Res. 77, 611.

    Google Scholar 

  • Forman, M. A.: 1970a, J. Geophys. Res. 75, 3147.

    Google Scholar 

  • Forman, M. A.: 1970b, Planetary Space Sci. 18, 25.

    Google Scholar 

  • Gleeson, L. J. and Axford, W. I.: 1969, Astrophys. Space Sci. 2, 431.

    Google Scholar 

  • Innanen, W. G. and Van Allen, J. A.: 1973, J. Geophys. Res. 78, 1019.

    Google Scholar 

  • McCracken, K. G. and Rao, U. R.: 1970, Space Sci. Rev. 11, 155.

    Google Scholar 

  • McCracken, K. G., Rao, U. R., and Bukata, R. P.: 1967, J. Geophys. Res. 72, 4293.

    Google Scholar 

  • McCracken, K. G., Rao, U. R., and Ness, N. F.: 1968, J. Geophys. Res. 73, 4159.

    Google Scholar 

  • McCracken, K. G., Rao, U. R., Bukata, R. P., and Keath, E. P.: 1971, Solar Phys. 18, 100.

    Google Scholar 

  • Ness, N. F.: 1970, Proc. XI Int. Conf. on Cosmic Rays (Budapest), Invited Papers, p. 41.

  • Ng, C. K.: 1972, Ph.D. Thesis, Monash University, Victoria, Australia.

    Google Scholar 

  • Ng. C. K., and Gleeson, L. J.: 1971a, Proc. XII Int. Conf. on Cosmic Rays (Hobart) 2, 499.

    Google Scholar 

  • Ng. C. K. and Gleeson, L. J.: 1971b, Solar Phys. 20, 166.

    Google Scholar 

  • Pyle, K. Roger: 1973, J. Geophys. Res. 78, 12.

    Google Scholar 

  • Rao, U. R., McCracken, K. G., Allum, F. R., Palmeira, R. A. R., Bartley, W. C., and Palmer, I. D.: 1971, Solar Phys. 19, 209.

    Google Scholar 

  • Rao, U. R., Allum, F. R., and McCracken, K. G.: 1973, J. Geophys. Res. 78, 8409.

    Google Scholar 

  • Roelof, E. C.: 1973, Proc. of Calgary Conf. on Solar-Terrestrial Relations, Calgary, August 1972, p. 411.

  • Wibberenz, G.: 1971, Proc. XII Int. Conf. on Cosmic Rays (Hobart), Rapporteur paper.

  • Roelof, E. C. and Krimigis, S. M.: 1973, J. Geophys. Res. 78, 5375.

    Google Scholar 

  • Wolfe, J. H.: 1972, in C. P. Sonett, P. J. Coleman and J. M. Wilcox, (eds.), Solar Wind, NASA- SP-308, 170.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allum, F.R., Palmeira, R.A.R., McCracken, K.G. et al. Cosmic ray anisotropies observed late in the decay phase of solar flare events. Sol Phys 38, 227–256 (1974). https://doi.org/10.1007/BF00161840

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161840

Keywords

Navigation